Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models

The detection of bank frauds is a topic which many financial sector companies have invested time and resources into. However, finding patterns in the methodologies used to commit fraud in banks is a job that primarily involves intimate knowledge of customer behavior, with the idea of isolating those...

Full description

Autores:
Gómez–Restrepo, Jackelyne
Cogollo–Flórez, Myladis R
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14454
Acceso en línea:
http://hdl.handle.net/10784/14454
Palabra clave:
Generalized Linear Model
Transactional History
Detected Frauds
Outliers Detection
Modelo Lineal Generalizado
Historial De Transacciones
Fraudes Detectados
Detección De Valores Atípicos
Rights
License
Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–Flórez
id REPOEAFIT2_ed22d2863274b0f200b07b220940344c
oai_identifier_str oai:repository.eafit.edu.co:10784/14454
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
dc.title.spa.fl_str_mv Detección de transacciones fraudulentas a través de un Modelo Lineal Mixto Generalizado
title Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
spellingShingle Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
Generalized Linear Model
Transactional History
Detected Frauds
Outliers Detection
Modelo Lineal Generalizado
Historial De Transacciones
Fraudes Detectados
Detección De Valores Atípicos
title_short Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
title_full Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
title_fullStr Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
title_full_unstemmed Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
title_sort Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
dc.creator.fl_str_mv Gómez–Restrepo, Jackelyne
Cogollo–Flórez, Myladis R
dc.contributor.author.spa.fl_str_mv Gómez–Restrepo, Jackelyne
Cogollo–Flórez, Myladis R
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT
dc.subject.keyword.eng.fl_str_mv Generalized Linear Model
Transactional History
Detected Frauds
Outliers Detection
topic Generalized Linear Model
Transactional History
Detected Frauds
Outliers Detection
Modelo Lineal Generalizado
Historial De Transacciones
Fraudes Detectados
Detección De Valores Atípicos
dc.subject.keyword.spa.fl_str_mv Modelo Lineal Generalizado
Historial De Transacciones
Fraudes Detectados
Detección De Valores Atípicos
description The detection of bank frauds is a topic which many financial sector companies have invested time and resources into. However, finding patterns in the methodologies used to commit fraud in banks is a job that primarily involves intimate knowledge of customer behavior, with the idea of isolating those transactions which do not correspond to what the client usually does. Thus, the solutions proposed in literature tend to focus on identifying outliersor groups, but fail to analyse each client or forecast fraud. This paper evaluates the implementation of a generalized linear model to detect fraud. With this model, unlike conventional methods, we consider the heterogeneity of customers. We not only generate a global model, but also a model for each customer which describes the behavior of each one according to their transactional history and previously detected fraudulent transactions. In particular, a mixed logistic model is used to estimate the probability that a transactionis fraudulent, using information that has been taken by the banking systems in different moments of time.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-12-01
dc.date.available.none.fl_str_mv 2019-11-22T18:49:14Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T18:49:14Z
dc.date.none.fl_str_mv 2012-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14454
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.8.16.8
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.8.16.8
url http://hdl.handle.net/10784/14454
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711
dc.rights.eng.fl_str_mv Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–Flórez
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–Flórez
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 8, No 16 (2012)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/7b8b3b2d-e5a7-4e35-b857-06e5ab5cf2e1/download
https://repository.eafit.edu.co/bitstreams/df7afa3c-3e35-4162-a5d8-ca8b69094dde/download
https://repository.eafit.edu.co/bitstreams/69b575b5-3936-4f9a-ad24-d70dd4e76c8a/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
87eaf2a6d5499b2b0460f30857794d5b
942e4e69af7495af0258f713b4ebd230
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110225250123776
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2012-12-012019-11-22T18:49:14Z2012-12-012019-11-22T18:49:14Z2256-43141794-9165http://hdl.handle.net/10784/1445410.17230/ingciencia.8.16.8The detection of bank frauds is a topic which many financial sector companies have invested time and resources into. However, finding patterns in the methodologies used to commit fraud in banks is a job that primarily involves intimate knowledge of customer behavior, with the idea of isolating those transactions which do not correspond to what the client usually does. Thus, the solutions proposed in literature tend to focus on identifying outliersor groups, but fail to analyse each client or forecast fraud. This paper evaluates the implementation of a generalized linear model to detect fraud. With this model, unlike conventional methods, we consider the heterogeneity of customers. We not only generate a global model, but also a model for each customer which describes the behavior of each one according to their transactional history and previously detected fraudulent transactions. In particular, a mixed logistic model is used to estimate the probability that a transactionis fraudulent, using information that has been taken by the banking systems in different moments of time.La detección de fraudes bancarios es un tema en el que muchas empresas del sector financiero han invertido tiempo y recursos. Sin embargo, encontrar patrones en las metodologías utilizadas para cometer fraude en los bancos es un trabajo que implica principalmente un conocimiento íntimo del comportamiento del cliente, con la idea de aislar aquellas transacciones que no se corresponden con lo que el cliente suele hacer. Por lo tanto, las soluciones propuestas en la literatura tienden a centrarse en identificar valores atípicos o grupos, pero no analizan a cada cliente o pronostican fraude. Este artículo evalúa la implementación de un modelo lineal generalizado para detectar fraude. Con este modelo, a diferencia de los métodos convencionales, consideramos la heterogeneidad de los clientes. No solo generamos un modelo global, sino también un modelo para cada cliente que describe el comportamiento de cada uno de acuerdo con su historial de transacciones y transacciones fraudulentas detectadas previamente. En particular, se utiliza un modelo logístico mixto para estimar la probabilidad de que una transacción sea fraudulenta, utilizando información que ha sido tomada por los sistemas bancarios en diferentes momentos.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–FlórezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 8, No 16 (2012)Detection of Fraudulent Transactions Through a Generalized Mixed Linear ModelsDetección de transacciones fraudulentas a través de un Modelo Lineal Mixto Generalizadoarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Generalized Linear ModelTransactional HistoryDetected FraudsOutliers DetectionModelo Lineal GeneralizadoHistorial De TransaccionesFraudes DetectadosDetección De Valores AtípicosGómez–Restrepo, JackelyneCogollo–Flórez, Myladis RUniversidad EAFITIngeniería y Ciencia816221237ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/7b8b3b2d-e5a7-4e35-b857-06e5ab5cf2e1/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL8.pdf8.pdfTexto completo PDFapplication/pdf505243https://repository.eafit.edu.co/bitstreams/df7afa3c-3e35-4162-a5d8-ca8b69094dde/download87eaf2a6d5499b2b0460f30857794d5bMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/69b575b5-3936-4f9a-ad24-d70dd4e76c8a/download942e4e69af7495af0258f713b4ebd230MD5310784/14454oai:repository.eafit.edu.co:10784/144542020-03-02 21:54:21.638open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co