Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models
The detection of bank frauds is a topic which many financial sector companies have invested time and resources into. However, finding patterns in the methodologies used to commit fraud in banks is a job that primarily involves intimate knowledge of customer behavior, with the idea of isolating those...
- Autores:
-
Gómez–Restrepo, Jackelyne
Cogollo–Flórez, Myladis R
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14454
- Acceso en línea:
- http://hdl.handle.net/10784/14454
- Palabra clave:
- Generalized Linear Model
Transactional History
Detected Frauds
Outliers Detection
Modelo Lineal Generalizado
Historial De Transacciones
Fraudes Detectados
Detección De Valores Atípicos
- Rights
- License
- Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–Flórez
id |
REPOEAFIT2_ed22d2863274b0f200b07b220940344c |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14454 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models |
dc.title.spa.fl_str_mv |
Detección de transacciones fraudulentas a través de un Modelo Lineal Mixto Generalizado |
title |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models |
spellingShingle |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models Generalized Linear Model Transactional History Detected Frauds Outliers Detection Modelo Lineal Generalizado Historial De Transacciones Fraudes Detectados Detección De Valores Atípicos |
title_short |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models |
title_full |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models |
title_fullStr |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models |
title_full_unstemmed |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models |
title_sort |
Detection of Fraudulent Transactions Through a Generalized Mixed Linear Models |
dc.creator.fl_str_mv |
Gómez–Restrepo, Jackelyne Cogollo–Flórez, Myladis R |
dc.contributor.author.spa.fl_str_mv |
Gómez–Restrepo, Jackelyne Cogollo–Flórez, Myladis R |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad EAFIT |
dc.subject.keyword.eng.fl_str_mv |
Generalized Linear Model Transactional History Detected Frauds Outliers Detection |
topic |
Generalized Linear Model Transactional History Detected Frauds Outliers Detection Modelo Lineal Generalizado Historial De Transacciones Fraudes Detectados Detección De Valores Atípicos |
dc.subject.keyword.spa.fl_str_mv |
Modelo Lineal Generalizado Historial De Transacciones Fraudes Detectados Detección De Valores Atípicos |
description |
The detection of bank frauds is a topic which many financial sector companies have invested time and resources into. However, finding patterns in the methodologies used to commit fraud in banks is a job that primarily involves intimate knowledge of customer behavior, with the idea of isolating those transactions which do not correspond to what the client usually does. Thus, the solutions proposed in literature tend to focus on identifying outliersor groups, but fail to analyse each client or forecast fraud. This paper evaluates the implementation of a generalized linear model to detect fraud. With this model, unlike conventional methods, we consider the heterogeneity of customers. We not only generate a global model, but also a model for each customer which describes the behavior of each one according to their transactional history and previously detected fraudulent transactions. In particular, a mixed logistic model is used to estimate the probability that a transactionis fraudulent, using information that has been taken by the banking systems in different moments of time. |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012-12-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T18:49:14Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T18:49:14Z |
dc.date.none.fl_str_mv |
2012-12-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14454 |
dc.identifier.doi.none.fl_str_mv |
10.17230/ingciencia.8.16.8 |
identifier_str_mv |
2256-4314 1794-9165 10.17230/ingciencia.8.16.8 |
url |
http://hdl.handle.net/10784/14454 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–Flórez |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–Flórez Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 8, No 16 (2012) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/7b8b3b2d-e5a7-4e35-b857-06e5ab5cf2e1/download https://repository.eafit.edu.co/bitstreams/df7afa3c-3e35-4162-a5d8-ca8b69094dde/download https://repository.eafit.edu.co/bitstreams/69b575b5-3936-4f9a-ad24-d70dd4e76c8a/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 87eaf2a6d5499b2b0460f30857794d5b 942e4e69af7495af0258f713b4ebd230 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110225250123776 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2012-12-012019-11-22T18:49:14Z2012-12-012019-11-22T18:49:14Z2256-43141794-9165http://hdl.handle.net/10784/1445410.17230/ingciencia.8.16.8The detection of bank frauds is a topic which many financial sector companies have invested time and resources into. However, finding patterns in the methodologies used to commit fraud in banks is a job that primarily involves intimate knowledge of customer behavior, with the idea of isolating those transactions which do not correspond to what the client usually does. Thus, the solutions proposed in literature tend to focus on identifying outliersor groups, but fail to analyse each client or forecast fraud. This paper evaluates the implementation of a generalized linear model to detect fraud. With this model, unlike conventional methods, we consider the heterogeneity of customers. We not only generate a global model, but also a model for each customer which describes the behavior of each one according to their transactional history and previously detected fraudulent transactions. In particular, a mixed logistic model is used to estimate the probability that a transactionis fraudulent, using information that has been taken by the banking systems in different moments of time.La detección de fraudes bancarios es un tema en el que muchas empresas del sector financiero han invertido tiempo y recursos. Sin embargo, encontrar patrones en las metodologías utilizadas para cometer fraude en los bancos es un trabajo que implica principalmente un conocimiento íntimo del comportamiento del cliente, con la idea de aislar aquellas transacciones que no se corresponden con lo que el cliente suele hacer. Por lo tanto, las soluciones propuestas en la literatura tienden a centrarse en identificar valores atípicos o grupos, pero no analizan a cada cliente o pronostican fraude. Este artículo evalúa la implementación de un modelo lineal generalizado para detectar fraude. Con este modelo, a diferencia de los métodos convencionales, consideramos la heterogeneidad de los clientes. No solo generamos un modelo global, sino también un modelo para cada cliente que describe el comportamiento de cada uno de acuerdo con su historial de transacciones y transacciones fraudulentas detectadas previamente. En particular, se utiliza un modelo logístico mixto para estimar la probabilidad de que una transacción sea fraudulenta, utilizando información que ha sido tomada por los sistemas bancarios en diferentes momentos.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1711Copyright (c) 2012 Jackelyne Gómez–Restrepo, Myladis R Cogollo–FlórezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 8, No 16 (2012)Detection of Fraudulent Transactions Through a Generalized Mixed Linear ModelsDetección de transacciones fraudulentas a través de un Modelo Lineal Mixto Generalizadoarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Generalized Linear ModelTransactional HistoryDetected FraudsOutliers DetectionModelo Lineal GeneralizadoHistorial De TransaccionesFraudes DetectadosDetección De Valores AtípicosGómez–Restrepo, JackelyneCogollo–Flórez, Myladis RUniversidad EAFITIngeniería y Ciencia816221237ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/7b8b3b2d-e5a7-4e35-b857-06e5ab5cf2e1/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL8.pdf8.pdfTexto completo PDFapplication/pdf505243https://repository.eafit.edu.co/bitstreams/df7afa3c-3e35-4162-a5d8-ca8b69094dde/download87eaf2a6d5499b2b0460f30857794d5bMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/69b575b5-3936-4f9a-ad24-d70dd4e76c8a/download942e4e69af7495af0258f713b4ebd230MD5310784/14454oai:repository.eafit.edu.co:10784/144542020-03-02 21:54:21.638open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |