Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2

Using impedance spectroscopy (IS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and infrared spectroscopy (IR) techniques to study the polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and hypophosphorous acid (H3 PO2) with different titanium oxide nanopa...

Full description

Autores:
Fernandez, M. E.
Murillo, G.
Vargas, R. A.
Peña Lara, D.
Diosa, J. E.
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/13174
Acceso en línea:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3904
http://hdl.handle.net/10784/13174
Palabra clave:
Composite polymer membranes
PVA
Hypophosphorous acid
Proton conduction
DC conductivity
Membranes poliméricas compositos
PVA
Conducción protónica
Rights
License
Copyright (c) 2017 M E Fernandez, G Murillo, R A Vargas, D Peña Lara, J E Diosa
id REPOEAFIT2_ebe99f4edfd315d9e29294ce4f5c751c
oai_identifier_str oai:repository.eafit.edu.co:10784/13174
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
dc.title.spa.fl_str_mv Mejoras en membranas de intercambio protónico (1—x)(H3PO2/PVA)-xTiO2
title Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
spellingShingle Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
Composite polymer membranes
PVA
Hypophosphorous acid
Proton conduction
DC conductivity
Membranes poliméricas compositos
PVA
Conducción protónica
title_short Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
title_full Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
title_fullStr Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
title_full_unstemmed Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
title_sort Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2
dc.creator.fl_str_mv Fernandez, M. E.
Murillo, G.
Vargas, R. A.
Peña Lara, D.
Diosa, J. E.
dc.contributor.author.none.fl_str_mv Fernandez, M. E.
Murillo, G.
Vargas, R. A.
Peña Lara, D.
Diosa, J. E.
dc.contributor.affiliation.spa.fl_str_mv Universidad del Valle
Universidad Icesi
dc.subject.keyword.eng.fl_str_mv Composite polymer membranes
PVA
Hypophosphorous acid
Proton conduction
DC conductivity
topic Composite polymer membranes
PVA
Hypophosphorous acid
Proton conduction
DC conductivity
Membranes poliméricas compositos
PVA
Conducción protónica
dc.subject.keyword.spa.fl_str_mv Membranes poliméricas compositos
PVA
Conducción protónica
description Using impedance spectroscopy (IS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and infrared spectroscopy (IR) techniques to study the polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and hypophosphorous acid (H3 PO2) with different titanium oxide nanoparticles (TiO$_2$) concentrations. The polymer systems (1-x)(H3 PO2/ PVA) + xTiO2 were prepared using the sol-casting method and different weight percent of TiO2, x= 10.0%. The DSC results show that the glass transition for molar fraction P/OH = 0.3 appears around 75°C and for the samples doped with TiO2 around 35°C the melting point for all membranes appear around 175°C. The FTIR spectra show changes in the profiles of the absorption bands with the addition of H3 PO2 and the different concentrations of TiO2. The IS results show dielectric and conductivity relaxations as well as a change in DC ionic conductivity with the TiO$_2$ content. The order of the ionic conductivity is about 10-2 S/cm for 5.0% of TiO2. The TGA in the heating run shows water loss that is in agreement with de DC conductivity measurements.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-04-24
dc.date.available.none.fl_str_mv 2018-11-16T16:28:57Z
dc.date.accessioned.none.fl_str_mv 2018-11-16T16:28:57Z
dc.date.none.fl_str_mv 2017-04-24
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
article
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3904
http://hdl.handle.net/10784/13174
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.13.25.6
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.13.25.6
url http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3904
http://hdl.handle.net/10784/13174
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3904
dc.rights.eng.fl_str_mv Copyright (c) 2017 M E Fernandez, G Murillo, R A Vargas, D Peña Lara, J E Diosa
Attribution 4.0 International (CC BY 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2017 M E Fernandez, G Murillo, R A Vargas, D Peña Lara, J E Diosa
Attribution 4.0 International (CC BY 4.0)
http://creativecommons.org/licenses/by/4.0
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.eng.fl_str_mv Ingeniería y Ciencia; Vol 13 No 25 (2017); 153-166
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 13 No 25 (2017); 153-166
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/917333c2-ad44-4c26-bc03-cf4f87825118/download
https://repository.eafit.edu.co/bitstreams/b0966da2-0f60-4b30-82c4-4cd3086ae355/download
https://repository.eafit.edu.co/bitstreams/2b8c906d-fa19-423b-9f39-c7925992a552/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
da9b21a5c7e00c7f1127cef8e97035e0
947d58216ea41ccc5085daaa56a37b6c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110213148508160
spelling 2017-04-242018-11-16T16:28:57Z2017-04-242018-11-16T16:28:57Z2256-43141794-9165http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3904http://hdl.handle.net/10784/1317410.17230/ingciencia.13.25.6Using impedance spectroscopy (IS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and infrared spectroscopy (IR) techniques to study the polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and hypophosphorous acid (H3 PO2) with different titanium oxide nanoparticles (TiO$_2$) concentrations. The polymer systems (1-x)(H3 PO2/ PVA) + xTiO2 were prepared using the sol-casting method and different weight percent of TiO2, x= 10.0%. The DSC results show that the glass transition for molar fraction P/OH = 0.3 appears around 75°C and for the samples doped with TiO2 around 35°C the melting point for all membranes appear around 175°C. The FTIR spectra show changes in the profiles of the absorption bands with the addition of H3 PO2 and the different concentrations of TiO2. The IS results show dielectric and conductivity relaxations as well as a change in DC ionic conductivity with the TiO$_2$ content. The order of the ionic conductivity is about 10-2 S/cm for 5.0% of TiO2. The TGA in the heating run shows water loss that is in agreement with de DC conductivity measurements.Usando las técnicas de espectroscopia de impedancia (IS), calorimetría de barrido diferencial (DSC), análisis termogravimetrico (TGA) y espectroscopia infrarroja (FTIR) se estudió el sistema polimérico (1—x)(H3PO2/ PVA) + xTiO2 el cual fue preparado usando el método de sol-casting a diferentes porcentaje de peso de nanopartículas de TiO2, x=10.0% Los resultados de DSC muestran que la transición vítrea para la fracción molar de P/OH = 0.3 emerge alrededor de 75°C y para las muestras dopadas con TiO2 alrededor de 35°C el punto de fusión para todas las membranas aparece alrededor de los 175°C. Los espectros de FTIR muestran cambios en los perfiles de las bandas de absorción con la adicción del H3PO2 y las diferentes concentraciones de TiO2. Los resultados de IS muestran relajaciones dieléctricas y de conductividad al igual que un cambio en la conductividad iónica DC con el contenido de TiO2. La conductividad iónica es del orden de 10-2 S/cm para 5.0% de TiO2. Los TGA en los barridos de calentamiento muestran pérdida de agua lo cual está de acuerdo con las medidas de conductividad DC.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3904Copyright (c) 2017 M E Fernandez, G Murillo, R A Vargas, D Peña Lara, J E DiosaAttribution 4.0 International (CC BY 4.0)http://creativecommons.org/licenses/by/4.0Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 13 No 25 (2017); 153-166Ingeniería y Ciencia; Vol 13 No 25 (2017); 153-166Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2Mejoras en membranas de intercambio protónico (1—x)(H3PO2/PVA)-xTiO2info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlepublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Composite polymer membranesPVAHypophosphorous acidProton conductionDC conductivityMembranes poliméricas compositosPVAConducción protónicaFernandez, M. E.Murillo, G.Vargas, R. A.Peña Lara, D.Diosa, J. E.Universidad del ValleUniversidad IcesiIngeniería y Ciencia1325153166ing.ciencTHUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/917333c2-ad44-4c26-bc03-cf4f87825118/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgTexto completo PDFimage/jpeg265796https://repository.eafit.edu.co/bitstreams/b0966da2-0f60-4b30-82c4-4cd3086ae355/downloadda9b21a5c7e00c7f1127cef8e97035e0MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/2b8c906d-fa19-423b-9f39-c7925992a552/download947d58216ea41ccc5085daaa56a37b6cMD5310784/13174oai:repository.eafit.edu.co:10784/131742020-03-01 17:43:41.005http://creativecommons.org/licenses/by/4.0Copyright (c) 2017 M E Fernandez, G Murillo, R A Vargas, D Peña Lara, J E Diosaopen.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co