Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem

The arc routing problem with a variable starting/ending position (Open Capacitated Arc Routing Problem - OCARP), in its classic version, pursues the best strategy to serve a set of customers located in the network arcs using vehicles. Compared to the Capacitated Arc Routing Problem (CARP), the OCARP...

Full description

Autores:
Macias, B J
Amaya, C A
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/11282
Acceso en línea:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3142
http://hdl.handle.net/10784/11282
Palabra clave:
Operations research
genetic algorithm
memetic algorithm
multi-objective optimization
CARP
OCARP
MO-OCARP
neural networks
local search
Operations Research
algoritmo genético
algoritmo memético
optimización multiobjetivo
CARP
OCARP
MO-OCARP
redes neuronales
búsqueda local
ruteo de vehículos sobre arcos.
90C08
90C35
90C29
90C59
68T20
Rights
License
Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc.
id REPOEAFIT2_e96ec888db45668e209e60e21093d818
oai_identifier_str oai:repository.eafit.edu.co:10784/11282
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 2016-02-222017-04-03T16:10:26Z2016-02-222017-04-03T16:10:26Z2256-43141794–9165http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3142http://hdl.handle.net/10784/1128210.17230/ingciencia.12.23.2The arc routing problem with a variable starting/ending position (Open Capacitated Arc Routing Problem - OCARP), in its classic version, pursues the best strategy to serve a set of customers located in the network arcs using vehicles. Compared to the Capacitated Arc Routing Problem (CARP), the OCARP lacks of constrains that guarantee that each vehicle ought to start and end the tour at a given vertex (also known as a depot). The aim of this paper is to propose a heuristic to find an efficient frontier for the main objective functions: minimize the number of vehicles and the total cost. Additionally, a hybrid algorithm that complements the genetic algorithm with artificial intelligence operator is proposed.El Problema de ruteo de vehículos sobre arcos con punto de inicio/fin variable (Open Capacitated Arc Routing Problem - OCARP), en su versión clásica, busca determinar la mejor estrategia para servir un conjunto de clientes localizados en los arcos de una red usando vehículos. A diferencia del Capacitated Arc Routing Problem (CARP), el OCARP no tiene las restricciones que aseguran que cada vehículo debe iniciar y terminar su ruta en un vértice dado (también conocido como depósito). El objetivo de este trabajo es proponer una heurística para encontrar la frontera eficiente dados dos objetivos: minimizar el número de vehículos y minimizar el costo total. Adicionalmente se propone complementar la heurística, la cual es basada en algoritmos genéticos, con operadores de inteligencia artificial.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3142Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc.http://creativecommons.org/licenses/by/4.0Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 25-46Ingeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 25-46Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing ProblemAlgoritmo memético con operadores de inteligencia artificial para el CARP con inicio y fin no determinado y bio-bjetivoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlepublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Operations researchgenetic algorithmmemetic algorithmmulti-objective optimizationCARPOCARPMO-OCARPneural networkslocal searchOperations Researchalgoritmo genéticoalgoritmo meméticooptimización multiobjetivoCARPOCARPMO-OCARPredes neuronalesbúsqueda localruteo de vehículos sobre arcos.90C0890C3590C2990C5968T20Macias, B JAmaya, C AIngeniería y Ciencia12232546ing.ciencORIGINALarticulo.htmlarticulo.htmlTexto completo HTMLtext/html290https://repository.eafit.edu.co/bitstreams/8f9e2d81-48d9-4cc5-a4d2-608502c48e84/download75ab54c8bd5ef15f24e24825b8a9cf38MD512.pdf2.pdfTexto completo PDFapplication/pdf659393https://repository.eafit.edu.co/bitstreams/0f67c90e-27e3-4cb9-9df1-4381238c17a7/download9fae27e3c1496d8e779d48b0951edfdcMD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/db368318-d476-429c-875e-d9e54583e1ea/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/11282oai:repository.eafit.edu.co:10784/112822020-02-18 12:45:49.13open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
dc.title.spa.fl_str_mv Algoritmo memético con operadores de inteligencia artificial para el CARP con inicio y fin no determinado y bio-bjetivo
title Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
spellingShingle Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
Operations research
genetic algorithm
memetic algorithm
multi-objective optimization
CARP
OCARP
MO-OCARP
neural networks
local search
Operations Research
algoritmo genético
algoritmo memético
optimización multiobjetivo
CARP
OCARP
MO-OCARP
redes neuronales
búsqueda local
ruteo de vehículos sobre arcos.
90C08
90C35
90C29
90C59
68T20
title_short Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
title_full Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
title_fullStr Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
title_full_unstemmed Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
title_sort Hybrid Algorithm Enhanced with Artificial Intelligence Applied to the Bi-Objective Open Capacitated Arc Routing Problem
dc.creator.fl_str_mv Macias, B J
Amaya, C A
dc.contributor.author.none.fl_str_mv Macias, B J
Amaya, C A
dc.subject.keyword.eng.fl_str_mv Operations research
genetic algorithm
memetic algorithm
multi-objective optimization
CARP
OCARP
MO-OCARP
neural networks
local search
topic Operations research
genetic algorithm
memetic algorithm
multi-objective optimization
CARP
OCARP
MO-OCARP
neural networks
local search
Operations Research
algoritmo genético
algoritmo memético
optimización multiobjetivo
CARP
OCARP
MO-OCARP
redes neuronales
búsqueda local
ruteo de vehículos sobre arcos.
90C08
90C35
90C29
90C59
68T20
dc.subject.keyword.spa.fl_str_mv Operations Research
algoritmo genético
algoritmo memético
optimización multiobjetivo
CARP
OCARP
MO-OCARP
redes neuronales
búsqueda local
ruteo de vehículos sobre arcos.
90C08
90C35
90C29
90C59
68T20
description The arc routing problem with a variable starting/ending position (Open Capacitated Arc Routing Problem - OCARP), in its classic version, pursues the best strategy to serve a set of customers located in the network arcs using vehicles. Compared to the Capacitated Arc Routing Problem (CARP), the OCARP lacks of constrains that guarantee that each vehicle ought to start and end the tour at a given vertex (also known as a depot). The aim of this paper is to propose a heuristic to find an efficient frontier for the main objective functions: minimize the number of vehicles and the total cost. Additionally, a hybrid algorithm that complements the genetic algorithm with artificial intelligence operator is proposed.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-02-22
dc.date.available.none.fl_str_mv 2017-04-03T16:10:26Z
dc.date.accessioned.none.fl_str_mv 2017-04-03T16:10:26Z
dc.date.none.fl_str_mv 2016-02-22
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
article
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794–9165
dc.identifier.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3142
http://hdl.handle.net/10784/11282
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.12.23.2
identifier_str_mv 2256-4314
1794–9165
10.17230/ingciencia.12.23.2
url http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3142
http://hdl.handle.net/10784/11282
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3142
dc.rights.spa.fl_str_mv Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc.
http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc.
http://creativecommons.org/licenses/by/4.0
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.eng.fl_str_mv Ingeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 25-46
dc.source.spa.fl_str_mv Ingeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 25-46
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/8f9e2d81-48d9-4cc5-a4d2-608502c48e84/download
https://repository.eafit.edu.co/bitstreams/0f67c90e-27e3-4cb9-9df1-4381238c17a7/download
https://repository.eafit.edu.co/bitstreams/db368318-d476-429c-875e-d9e54583e1ea/download
bitstream.checksum.fl_str_mv 75ab54c8bd5ef15f24e24825b8a9cf38
9fae27e3c1496d8e779d48b0951edfdc
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110197003583488