An algorithmic approach for simulating realistic irregular lattices.
There is a wide variety of computational experiments, or statistical simulations, in which regional scientists require regular and irregular lattices with a predefined number of polygons. While most commercial and free GIS software offer the possibility of generating regular lattices of any size, th...
- Autores:
-
Duque, Juan C.
Betancourt, Alejandro
Marin, Freddy
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/1003
- Acceso en línea:
- http://hdl.handle.net/10784/1003
- Palabra clave:
- RI-Maps
MR-Polygons
Regional Science
Lattices
Computation
Experiment
- Rights
- License
- Acceso abierto
Summary: | There is a wide variety of computational experiments, or statistical simulations, in which regional scientists require regular and irregular lattices with a predefined number of polygons. While most commercial and free GIS software offer the possibility of generating regular lattices of any size, the generation of instances of irregular lattices is not a straightforward task. The most common strategy in this case is to find a real map that matches as closely as possible the required number of polygons. This practice is usually conducted without considering whether the topological characteristics of the selected map are close to those for an “average” map sampled in different parts of the world. In this paper, we propose an algorithm, RI-Maps, that combines fractal theory, stochastic calculus and computational geometry for simulating realistic irregular lattices with a predefined number of polygons. The irregular lattices generated with RI-Maps have guaranteed consistency in their topological characteristics, which reduces the potential distortions in the computational or statistical results due to an inappropriate selection of the lattices. |
---|