What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption

In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of th...

Full description

Autores:
Ramírez Hassan, Andrés
Cardona Jiménez, Jhonatan
Pericchi Guerra, Raul
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/2857
Acceso en línea:
http://hdl.handle.net/10784/2857
Palabra clave:
Autoregressive model
Bayesian analysis
Forecast
Robust prior
Rights
License
Acceso abierto
id REPOEAFIT2_e4b6387e4b90b8ed76194a70954d9167
oai_identifier_str oai:repository.eafit.edu.co:10784/2857
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2014-08-01T20:58:17Z2014-07-232014-08-01T20:58:17Zhttp://hdl.handle.net/10784/2857C11C53In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of these prior distributions on the posterior distributions under different assumptions associated with the coefficient of variation of prior hyperparameters in a context where there is a conflict between the sample information and the elicited hyperparameters. We show that the posterior parameters are less affected by the prior hyperparameters when the Studentized-Gamma and Student's t-Scaled Beta two models are used. We show that the Normal-Gamma model obtains sensible outcomes in predictions when there is a small sample size. However, this property is lost when the experts overestimate the certainty of their knowledge. In the case that the experts greatly trust their beliefs, it is a good idea to use Student's t distribution as the prior distribution, because we obtain small posterior predictive errors. In addition, we find that the posterior predictive distributions using one of the versions of Student's t as prior are robust to the coefficient of variation of the prior parameters. Finally, it is shown that the Normal-Gamma model has a posterior distribution of the variance concentrated near zero when there is a high level of confidence in the experts' knowledge: this implies a narrow posterior predictive credibility interval, especially using small sample sizes.engUniversidad EAFITEscuela de Economía y FinanzasWhat is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumptionworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Autoregressive modelBayesian analysisForecastRobust prioraramir21@eafit.edu.cojcardonj@dme.ufrj.brlrpericchi@uprrp.eduRamírez Hassan, AndrésCardona Jiménez, JhonatanPericchi Guerra, RaulLICENSElicense.txtlicense.txttext/plain; charset=utf-81145https://repository.eafit.edu.co/bitstreams/28620d14-c04f-42ee-b378-5c1c219d4b84/downloada4a15015cc3b57a4390e89906678ba6eMD52ORIGINAL2014_16_Andres_Ramirez_Hassan.pdf2014_16_Andres_Ramirez_Hassan.pdfDocumento de trabajo de investigaciónapplication/pdf1572525https://repository.eafit.edu.co/bitstreams/34269087-af66-4b9d-9380-ec9d88488c4b/download31517b52c57b94c1fdf1a018c1937edbMD5310784/2857oai:repository.eafit.edu.co:10784/28572024-03-05 14:06:02.071open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
title What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
spellingShingle What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
Autoregressive model
Bayesian analysis
Forecast
Robust prior
title_short What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
title_full What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
title_fullStr What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
title_full_unstemmed What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
title_sort What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
dc.creator.fl_str_mv Ramírez Hassan, Andrés
Cardona Jiménez, Jhonatan
Pericchi Guerra, Raul
dc.contributor.eafitauthor.none.fl_str_mv aramir21@eafit.edu.co
jcardonj@dme.ufrj.br
lrpericchi@uprrp.edu
dc.contributor.author.none.fl_str_mv Ramírez Hassan, Andrés
Cardona Jiménez, Jhonatan
Pericchi Guerra, Raul
dc.subject.keyword.eng.fl_str_mv Autoregressive model
Bayesian analysis
Forecast
Robust prior
topic Autoregressive model
Bayesian analysis
Forecast
Robust prior
description In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of these prior distributions on the posterior distributions under different assumptions associated with the coefficient of variation of prior hyperparameters in a context where there is a conflict between the sample information and the elicited hyperparameters. We show that the posterior parameters are less affected by the prior hyperparameters when the Studentized-Gamma and Student's t-Scaled Beta two models are used. We show that the Normal-Gamma model obtains sensible outcomes in predictions when there is a small sample size. However, this property is lost when the experts overestimate the certainty of their knowledge. In the case that the experts greatly trust their beliefs, it is a good idea to use Student's t distribution as the prior distribution, because we obtain small posterior predictive errors. In addition, we find that the posterior predictive distributions using one of the versions of Student's t as prior are robust to the coefficient of variation of the prior parameters. Finally, it is shown that the Normal-Gamma model has a posterior distribution of the variance concentrated near zero when there is a high level of confidence in the experts' knowledge: this implies a narrow posterior predictive credibility interval, especially using small sample sizes.
publishDate 2014
dc.date.available.none.fl_str_mv 2014-08-01T20:58:17Z
dc.date.issued.none.fl_str_mv 2014-07-23
dc.date.accessioned.none.fl_str_mv 2014-08-01T20:58:17Z
dc.type.eng.fl_str_mv workingPaper
info:eu-repo/semantics/workingPaper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.local.spa.fl_str_mv Documento de trabajo de investigación
dc.type.hasVersion.eng.fl_str_mv draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/2857
dc.identifier.jel.none.fl_str_mv C11
C53
url http://hdl.handle.net/10784/2857
identifier_str_mv C11
C53
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.department.spa.fl_str_mv Escuela de Economía y Finanzas
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/28620d14-c04f-42ee-b378-5c1c219d4b84/download
https://repository.eafit.edu.co/bitstreams/34269087-af66-4b9d-9380-ec9d88488c4b/download
bitstream.checksum.fl_str_mv a4a15015cc3b57a4390e89906678ba6e
31517b52c57b94c1fdf1a018c1937edb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110153289498624