What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of th...
- Autores:
-
Ramírez Hassan, Andrés
Cardona Jiménez, Jhonatan
Pericchi Guerra, Raul
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/2857
- Acceso en línea:
- http://hdl.handle.net/10784/2857
- Palabra clave:
- Autoregressive model
Bayesian analysis
Forecast
Robust prior
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_e4b6387e4b90b8ed76194a70954d9167 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/2857 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2014-08-01T20:58:17Z2014-07-232014-08-01T20:58:17Zhttp://hdl.handle.net/10784/2857C11C53In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of these prior distributions on the posterior distributions under different assumptions associated with the coefficient of variation of prior hyperparameters in a context where there is a conflict between the sample information and the elicited hyperparameters. We show that the posterior parameters are less affected by the prior hyperparameters when the Studentized-Gamma and Student's t-Scaled Beta two models are used. We show that the Normal-Gamma model obtains sensible outcomes in predictions when there is a small sample size. However, this property is lost when the experts overestimate the certainty of their knowledge. In the case that the experts greatly trust their beliefs, it is a good idea to use Student's t distribution as the prior distribution, because we obtain small posterior predictive errors. In addition, we find that the posterior predictive distributions using one of the versions of Student's t as prior are robust to the coefficient of variation of the prior parameters. Finally, it is shown that the Normal-Gamma model has a posterior distribution of the variance concentrated near zero when there is a high level of confidence in the experts' knowledge: this implies a narrow posterior predictive credibility interval, especially using small sample sizes.engUniversidad EAFITEscuela de Economía y FinanzasWhat is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumptionworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Autoregressive modelBayesian analysisForecastRobust prioraramir21@eafit.edu.cojcardonj@dme.ufrj.brlrpericchi@uprrp.eduRamírez Hassan, AndrésCardona Jiménez, JhonatanPericchi Guerra, RaulLICENSElicense.txtlicense.txttext/plain; charset=utf-81145https://repository.eafit.edu.co/bitstreams/28620d14-c04f-42ee-b378-5c1c219d4b84/downloada4a15015cc3b57a4390e89906678ba6eMD52ORIGINAL2014_16_Andres_Ramirez_Hassan.pdf2014_16_Andres_Ramirez_Hassan.pdfDocumento de trabajo de investigaciónapplication/pdf1572525https://repository.eafit.edu.co/bitstreams/34269087-af66-4b9d-9380-ec9d88488c4b/download31517b52c57b94c1fdf1a018c1937edbMD5310784/2857oai:repository.eafit.edu.co:10784/28572024-03-05 14:06:02.071open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption |
title |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption |
spellingShingle |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption Autoregressive model Bayesian analysis Forecast Robust prior |
title_short |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption |
title_full |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption |
title_fullStr |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption |
title_full_unstemmed |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption |
title_sort |
What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption |
dc.creator.fl_str_mv |
Ramírez Hassan, Andrés Cardona Jiménez, Jhonatan Pericchi Guerra, Raul |
dc.contributor.eafitauthor.none.fl_str_mv |
aramir21@eafit.edu.co jcardonj@dme.ufrj.br lrpericchi@uprrp.edu |
dc.contributor.author.none.fl_str_mv |
Ramírez Hassan, Andrés Cardona Jiménez, Jhonatan Pericchi Guerra, Raul |
dc.subject.keyword.eng.fl_str_mv |
Autoregressive model Bayesian analysis Forecast Robust prior |
topic |
Autoregressive model Bayesian analysis Forecast Robust prior |
description |
In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of these prior distributions on the posterior distributions under different assumptions associated with the coefficient of variation of prior hyperparameters in a context where there is a conflict between the sample information and the elicited hyperparameters. We show that the posterior parameters are less affected by the prior hyperparameters when the Studentized-Gamma and Student's t-Scaled Beta two models are used. We show that the Normal-Gamma model obtains sensible outcomes in predictions when there is a small sample size. However, this property is lost when the experts overestimate the certainty of their knowledge. In the case that the experts greatly trust their beliefs, it is a good idea to use Student's t distribution as the prior distribution, because we obtain small posterior predictive errors. In addition, we find that the posterior predictive distributions using one of the versions of Student's t as prior are robust to the coefficient of variation of the prior parameters. Finally, it is shown that the Normal-Gamma model has a posterior distribution of the variance concentrated near zero when there is a high level of confidence in the experts' knowledge: this implies a narrow posterior predictive credibility interval, especially using small sample sizes. |
publishDate |
2014 |
dc.date.available.none.fl_str_mv |
2014-08-01T20:58:17Z |
dc.date.issued.none.fl_str_mv |
2014-07-23 |
dc.date.accessioned.none.fl_str_mv |
2014-08-01T20:58:17Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/2857 |
dc.identifier.jel.none.fl_str_mv |
C11 C53 |
url |
http://hdl.handle.net/10784/2857 |
identifier_str_mv |
C11 C53 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/28620d14-c04f-42ee-b378-5c1c219d4b84/download https://repository.eafit.edu.co/bitstreams/34269087-af66-4b9d-9380-ec9d88488c4b/download |
bitstream.checksum.fl_str_mv |
a4a15015cc3b57a4390e89906678ba6e 31517b52c57b94c1fdf1a018c1937edb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110153289498624 |