Comparison of PBM and ANPM models for predicting grinding product size distributions
Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to minimize the wasted energy invested in overgrinding. However, the most common mo...
- Autores:
-
Luján González, Juan Camilo
Restrepo Lopera, Juan Pablo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/17079
- Acceso en línea:
- http://hdl.handle.net/10784/17079
- Palabra clave:
- Balances poblacionales
Molienda
Trituración
Distribución de tamaño de partícula
PLANIFICACIÓN DE LA PRODUCCIÓN
MODELOS MATEMÁTICOS
ESTADÍSTICA INDUSTRIAL
CONSUMO DE ENERGÍA
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_e2c027bda628b35b545f51d37eb96cb9 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/17079 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Builes Toro, SantiagoLuján González, Juan CamiloRestrepo Lopera, Juan PabloIngeniero de Procesosjlujang2@eafit.edu.cojurest82@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-07-22T20:19:43Z20202020-07-22T20:19:43Zhttp://hdl.handle.net/10784/17079658.51 L953Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to minimize the wasted energy invested in overgrinding. However, the most common models for scaling, such as Bond, could lead to a design risk on the order of ± 20% due to their assumption that a single particle size can describe the entire particle size distribution. Thus, different approaches (both phenomenological and non- phenomenological) need to be explored. In the present work, a population balance model is compared with an algebraic statistical model, to predict the evolution of particle size distribution over time, assessing them in terms of accuracy, robustness, and computational complexity. Even though the population balance model had a lower accuracy and higher mathematical complexity its predictions were physically coherent, which made it a more robust model for extrapolating to different initial conditions and milling times. It is important to note that due to the 2020 COVID-19 pandemic, experimental information was limited, which inhibited an independent validation of the models, and an overfitting analysis for the ANPM.spaUniversidad EAFITIngeniería de ProcesosEscuela de Ingeniería. Departamento de Ingeniería ProcesosMedellínBalances poblacionalesMoliendaTrituraciónDistribución de tamaño de partículaPLANIFICACIÓN DE LA PRODUCCIÓNMODELOS MATEMÁTICOSESTADÍSTICA INDUSTRIALCONSUMO DE ENERGÍAComparison of PBM and ANPM models for predicting grinding product size distributionsbachelorThesisinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoacceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAcceso abiertohttp://purl.org/coar/access_right/c_abf2ORIGINALJuanCamilo_LujanGonzalez_JuanPablo_RestrepoLopera_2020.pdfJuanCamilo_LujanGonzalez_JuanPablo_RestrepoLopera_2020.pdfTrabajo de gradoapplication/pdf777922https://repository.eafit.edu.co/bitstreams/ec52ed1f-fe67-4df5-b4c4-9504bb9df561/downloaddaf1f50466669ec72d9be25322e2f2ceMD52aprobacion_trabajo_grado_eafit.pdfaprobacion_trabajo_grado_eafit.pdfConstancia aprobación trabajo de gradoapplication/pdf509744https://repository.eafit.edu.co/bitstreams/794c6f9b-72ce-4791-b047-84a18230a709/download287e018c69d99a4eeb38ded97a41fb06MD53formulario_autorizacion_publicacion_obras.pdfformulario_autorizacion_publicacion_obras.pdfFormulario de autorización de publicación de obrasapplication/pdf980246https://repository.eafit.edu.co/bitstreams/b9bd58b8-012d-451d-83e7-1c9b2e1fd7fc/download2cae7a5fda290d2d983506f62d54c0ecMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/9b1657b0-cd05-41ea-b7be-d1089a9f34bd/download76025f86b095439b7ac65b367055d40cMD5110784/17079oai:repository.eafit.edu.co:10784/170792020-07-22 15:19:43.69open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.spa.fl_str_mv |
Comparison of PBM and ANPM models for predicting grinding product size distributions |
title |
Comparison of PBM and ANPM models for predicting grinding product size distributions |
spellingShingle |
Comparison of PBM and ANPM models for predicting grinding product size distributions Balances poblacionales Molienda Trituración Distribución de tamaño de partícula PLANIFICACIÓN DE LA PRODUCCIÓN MODELOS MATEMÁTICOS ESTADÍSTICA INDUSTRIAL CONSUMO DE ENERGÍA |
title_short |
Comparison of PBM and ANPM models for predicting grinding product size distributions |
title_full |
Comparison of PBM and ANPM models for predicting grinding product size distributions |
title_fullStr |
Comparison of PBM and ANPM models for predicting grinding product size distributions |
title_full_unstemmed |
Comparison of PBM and ANPM models for predicting grinding product size distributions |
title_sort |
Comparison of PBM and ANPM models for predicting grinding product size distributions |
dc.creator.fl_str_mv |
Luján González, Juan Camilo Restrepo Lopera, Juan Pablo |
dc.contributor.advisor.spa.fl_str_mv |
Builes Toro, Santiago |
dc.contributor.author.none.fl_str_mv |
Luján González, Juan Camilo Restrepo Lopera, Juan Pablo |
dc.subject.spa.fl_str_mv |
Balances poblacionales Molienda Trituración Distribución de tamaño de partícula |
topic |
Balances poblacionales Molienda Trituración Distribución de tamaño de partícula PLANIFICACIÓN DE LA PRODUCCIÓN MODELOS MATEMÁTICOS ESTADÍSTICA INDUSTRIAL CONSUMO DE ENERGÍA |
dc.subject.lemb.spa.fl_str_mv |
PLANIFICACIÓN DE LA PRODUCCIÓN MODELOS MATEMÁTICOS ESTADÍSTICA INDUSTRIAL CONSUMO DE ENERGÍA |
description |
Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to minimize the wasted energy invested in overgrinding. However, the most common models for scaling, such as Bond, could lead to a design risk on the order of ± 20% due to their assumption that a single particle size can describe the entire particle size distribution. Thus, different approaches (both phenomenological and non- phenomenological) need to be explored. In the present work, a population balance model is compared with an algebraic statistical model, to predict the evolution of particle size distribution over time, assessing them in terms of accuracy, robustness, and computational complexity. Even though the population balance model had a lower accuracy and higher mathematical complexity its predictions were physically coherent, which made it a more robust model for extrapolating to different initial conditions and milling times. It is important to note that due to the 2020 COVID-19 pandemic, experimental information was limited, which inhibited an independent validation of the models, and an overfitting analysis for the ANPM. |
publishDate |
2020 |
dc.date.available.none.fl_str_mv |
2020-07-22T20:19:43Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-07-22T20:19:43Z |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.hasVersion.eng.fl_str_mv |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/17079 |
dc.identifier.ddc.none.fl_str_mv |
658.51 L953 |
url |
http://hdl.handle.net/10784/17079 |
identifier_str_mv |
658.51 L953 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Procesos |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ingeniería. Departamento de Ingeniería Procesos |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/ec52ed1f-fe67-4df5-b4c4-9504bb9df561/download https://repository.eafit.edu.co/bitstreams/794c6f9b-72ce-4791-b047-84a18230a709/download https://repository.eafit.edu.co/bitstreams/b9bd58b8-012d-451d-83e7-1c9b2e1fd7fc/download https://repository.eafit.edu.co/bitstreams/9b1657b0-cd05-41ea-b7be-d1089a9f34bd/download |
bitstream.checksum.fl_str_mv |
daf1f50466669ec72d9be25322e2f2ce 287e018c69d99a4eeb38ded97a41fb06 2cae7a5fda290d2d983506f62d54c0ec 76025f86b095439b7ac65b367055d40c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110352318660608 |