Comparison of PBM and ANPM models for predicting grinding product size distributions

Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to minimize the wasted energy invested in overgrinding. However, the most common mo...

Full description

Autores:
Luján González, Juan Camilo
Restrepo Lopera, Juan Pablo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/17079
Acceso en línea:
http://hdl.handle.net/10784/17079
Palabra clave:
Balances poblacionales
Molienda
Trituración
Distribución de tamaño de partícula
PLANIFICACIÓN DE LA PRODUCCIÓN
MODELOS MATEMÁTICOS
ESTADÍSTICA INDUSTRIAL
CONSUMO DE ENERGÍA
Rights
License
Acceso abierto
id REPOEAFIT2_e2c027bda628b35b545f51d37eb96cb9
oai_identifier_str oai:repository.eafit.edu.co:10784/17079
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Builes Toro, SantiagoLuján González, Juan CamiloRestrepo Lopera, Juan PabloIngeniero de Procesosjlujang2@eafit.edu.cojurest82@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-07-22T20:19:43Z20202020-07-22T20:19:43Zhttp://hdl.handle.net/10784/17079658.51 L953Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to minimize the wasted energy invested in overgrinding. However, the most common models for scaling, such as Bond, could lead to a design risk on the order of ± 20% due to their assumption that a single particle size can describe the entire particle size distribution. Thus, different approaches (both phenomenological and non- phenomenological) need to be explored. In the present work, a population balance model is compared with an algebraic statistical model, to predict the evolution of particle size distribution over time, assessing them in terms of accuracy, robustness, and computational complexity. Even though the population balance model had a lower accuracy and higher mathematical complexity its predictions were physically coherent, which made it a more robust model for extrapolating to different initial conditions and milling times. It is important to note that due to the 2020 COVID-19 pandemic, experimental information was limited, which inhibited an independent validation of the models, and an overfitting analysis for the ANPM.spaUniversidad EAFITIngeniería de ProcesosEscuela de Ingeniería. Departamento de Ingeniería ProcesosMedellínBalances poblacionalesMoliendaTrituraciónDistribución de tamaño de partículaPLANIFICACIÓN DE LA PRODUCCIÓNMODELOS MATEMÁTICOSESTADÍSTICA INDUSTRIALCONSUMO DE ENERGÍAComparison of PBM and ANPM models for predicting grinding product size distributionsbachelorThesisinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoacceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAcceso abiertohttp://purl.org/coar/access_right/c_abf2ORIGINALJuanCamilo_LujanGonzalez_JuanPablo_RestrepoLopera_2020.pdfJuanCamilo_LujanGonzalez_JuanPablo_RestrepoLopera_2020.pdfTrabajo de gradoapplication/pdf777922https://repository.eafit.edu.co/bitstreams/ec52ed1f-fe67-4df5-b4c4-9504bb9df561/downloaddaf1f50466669ec72d9be25322e2f2ceMD52aprobacion_trabajo_grado_eafit.pdfaprobacion_trabajo_grado_eafit.pdfConstancia aprobación trabajo de gradoapplication/pdf509744https://repository.eafit.edu.co/bitstreams/794c6f9b-72ce-4791-b047-84a18230a709/download287e018c69d99a4eeb38ded97a41fb06MD53formulario_autorizacion_publicacion_obras.pdfformulario_autorizacion_publicacion_obras.pdfFormulario de autorización de publicación de obrasapplication/pdf980246https://repository.eafit.edu.co/bitstreams/b9bd58b8-012d-451d-83e7-1c9b2e1fd7fc/download2cae7a5fda290d2d983506f62d54c0ecMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/9b1657b0-cd05-41ea-b7be-d1089a9f34bd/download76025f86b095439b7ac65b367055d40cMD5110784/17079oai:repository.eafit.edu.co:10784/170792020-07-22 15:19:43.69open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.spa.fl_str_mv Comparison of PBM and ANPM models for predicting grinding product size distributions
title Comparison of PBM and ANPM models for predicting grinding product size distributions
spellingShingle Comparison of PBM and ANPM models for predicting grinding product size distributions
Balances poblacionales
Molienda
Trituración
Distribución de tamaño de partícula
PLANIFICACIÓN DE LA PRODUCCIÓN
MODELOS MATEMÁTICOS
ESTADÍSTICA INDUSTRIAL
CONSUMO DE ENERGÍA
title_short Comparison of PBM and ANPM models for predicting grinding product size distributions
title_full Comparison of PBM and ANPM models for predicting grinding product size distributions
title_fullStr Comparison of PBM and ANPM models for predicting grinding product size distributions
title_full_unstemmed Comparison of PBM and ANPM models for predicting grinding product size distributions
title_sort Comparison of PBM and ANPM models for predicting grinding product size distributions
dc.creator.fl_str_mv Luján González, Juan Camilo
Restrepo Lopera, Juan Pablo
dc.contributor.advisor.spa.fl_str_mv Builes Toro, Santiago
dc.contributor.author.none.fl_str_mv Luján González, Juan Camilo
Restrepo Lopera, Juan Pablo
dc.subject.spa.fl_str_mv Balances poblacionales
Molienda
Trituración
Distribución de tamaño de partícula
topic Balances poblacionales
Molienda
Trituración
Distribución de tamaño de partícula
PLANIFICACIÓN DE LA PRODUCCIÓN
MODELOS MATEMÁTICOS
ESTADÍSTICA INDUSTRIAL
CONSUMO DE ENERGÍA
dc.subject.lemb.spa.fl_str_mv PLANIFICACIÓN DE LA PRODUCCIÓN
MODELOS MATEMÁTICOS
ESTADÍSTICA INDUSTRIAL
CONSUMO DE ENERGÍA
description Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to minimize the wasted energy invested in overgrinding. However, the most common models for scaling, such as Bond, could lead to a design risk on the order of ± 20% due to their assumption that a single particle size can describe the entire particle size distribution. Thus, different approaches (both phenomenological and non- phenomenological) need to be explored. In the present work, a population balance model is compared with an algebraic statistical model, to predict the evolution of particle size distribution over time, assessing them in terms of accuracy, robustness, and computational complexity. Even though the population balance model had a lower accuracy and higher mathematical complexity its predictions were physically coherent, which made it a more robust model for extrapolating to different initial conditions and milling times. It is important to note that due to the 2020 COVID-19 pandemic, experimental information was limited, which inhibited an independent validation of the models, and an overfitting analysis for the ANPM.
publishDate 2020
dc.date.available.none.fl_str_mv 2020-07-22T20:19:43Z
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2020-07-22T20:19:43Z
dc.type.eng.fl_str_mv bachelorThesis
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/17079
dc.identifier.ddc.none.fl_str_mv 658.51 L953
url http://hdl.handle.net/10784/17079
identifier_str_mv 658.51 L953
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.program.spa.fl_str_mv Ingeniería de Procesos
dc.publisher.department.spa.fl_str_mv Escuela de Ingeniería. Departamento de Ingeniería Procesos
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/ec52ed1f-fe67-4df5-b4c4-9504bb9df561/download
https://repository.eafit.edu.co/bitstreams/794c6f9b-72ce-4791-b047-84a18230a709/download
https://repository.eafit.edu.co/bitstreams/b9bd58b8-012d-451d-83e7-1c9b2e1fd7fc/download
https://repository.eafit.edu.co/bitstreams/9b1657b0-cd05-41ea-b7be-d1089a9f34bd/download
bitstream.checksum.fl_str_mv daf1f50466669ec72d9be25322e2f2ce
287e018c69d99a4eeb38ded97a41fb06
2cae7a5fda290d2d983506f62d54c0ec
76025f86b095439b7ac65b367055d40c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110352318660608