A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation

Atrial Fibrillation is a common cardiac arrhythmia, which is characterized by an abnormal heartbeat rhythm that can be life-threatening. Recently, researchers have proposed several Convolutional Neural Networks (CNNs) to detect Atrial Fibrillation. CNNs have high requirements on computing and memory...

Full description

Autores:
Jaramillo-Rueda, Andrés F
Vargas-Pacheco, Laura Y
Fajardo, Carlos A.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/25808
Acceso en línea:
http://hdl.handle.net/10784/25808
Palabra clave:
Atrial fibrillation
Automatic detection
FPGA implementation
Quantized Convolutional Neural Network
Detección automática
fibrilación auricular
implementación en FPGA
red neuronal convolucional cuantizada
Rights
openAccess
License
Copyright © 2020 Andrés F Jaramillo-Rueda, Laura Y Vargas-Pacheco, Carlos A Fajardo
id REPOEAFIT2_ddcfc75b4287b620317b141ddc41298d
oai_identifier_str oai:repository.eafit.edu.co:10784/25808
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
dc.title.spa.fl_str_mv Arquitectura Computacional para la Inferencia deuna CNN Cuantizada para Detectar FibrilaciónAuricular
title A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
spellingShingle A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
Atrial fibrillation
Automatic detection
FPGA implementation
Quantized Convolutional Neural Network
Detección automática
fibrilación auricular
implementación en FPGA
red neuronal convolucional cuantizada
title_short A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
title_full A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
title_fullStr A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
title_full_unstemmed A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
title_sort A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation
dc.creator.fl_str_mv Jaramillo-Rueda, Andrés F
Vargas-Pacheco, Laura Y
Fajardo, Carlos A.
dc.contributor.author.spa.fl_str_mv Jaramillo-Rueda, Andrés F
Vargas-Pacheco, Laura Y
Fajardo, Carlos A.
dc.contributor.affiliation.spa.fl_str_mv Universidad Industrial de Santander
dc.subject.keyword.eng.fl_str_mv Atrial fibrillation
Automatic detection
FPGA implementation
Quantized Convolutional Neural Network
topic Atrial fibrillation
Automatic detection
FPGA implementation
Quantized Convolutional Neural Network
Detección automática
fibrilación auricular
implementación en FPGA
red neuronal convolucional cuantizada
dc.subject.keyword.spa.fl_str_mv Detección automática
fibrilación auricular
implementación en FPGA
red neuronal convolucional cuantizada
description Atrial Fibrillation is a common cardiac arrhythmia, which is characterized by an abnormal heartbeat rhythm that can be life-threatening. Recently, researchers have proposed several Convolutional Neural Networks (CNNs) to detect Atrial Fibrillation. CNNs have high requirements on computing and memory resources, which usually demand the use of High Performance Computing (eg, GPUs). This high energy demand is a challenge for portable devices. Therefore, efficient hardware implementations are required. We propose a computational architecture for the inference of a Quantized Convolutional Neural Network (Q-CNN) that allows the detection of the Atrial Fibrillation (AF). The architecture exploits data-level parallelism by incorporating SIMD-based vector units, which is optimized in terms of computation and storage and also optimized to perform both the convolutional and fully connected layers. The computational architecture was implemented and tested in a Xilinx Artix-7 FPGA. We present the experimental results regarding the quantization process in a different number of bits, hardware resources, and precision. The results show an accuracy of 94% accuracy for 22-bits. This work aims to be the basis for the future implementation of a portable, low-cost, and high-reliability device for the diagnosis of Atrial Fibrillation.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-11
dc.date.available.none.fl_str_mv 2021-02-19T16:41:44Z
dc.date.accessioned.none.fl_str_mv 2021-02-19T16:41:44Z
dc.date.none.fl_str_mv 2020-11-11
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/25808
identifier_str_mv 1794-9165
url http://hdl.handle.net/10784/25808
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6372/5064
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6372/5064
dc.rights.eng.fl_str_mv Copyright © 2020 Andrés F Jaramillo-Rueda, Laura Y Vargas-Pacheco, Carlos A Fajardo
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright © 2020 Andrés F Jaramillo-Rueda, Laura Y Vargas-Pacheco, Carlos A Fajardo
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Revista Ingeniería y Ciencias, Vol. 16 Núm. 32 (2020)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/5852de60-3abc-47a5-92f9-ac59dbfc123f/download
https://repository.eafit.edu.co/bitstreams/c127f380-0efe-43ae-85ef-44fe54062b13/download
https://repository.eafit.edu.co/bitstreams/308dd934-c756-49ee-844d-95b9a753fa52/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
fedcbe84846cf3324ce3cdfa452f459c
150cd14d4fe5a87fe9df03411683ba28
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110502525075456
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-11-112021-02-19T16:41:44Z2020-11-112021-02-19T16:41:44Z1794-9165http://hdl.handle.net/10784/25808Atrial Fibrillation is a common cardiac arrhythmia, which is characterized by an abnormal heartbeat rhythm that can be life-threatening. Recently, researchers have proposed several Convolutional Neural Networks (CNNs) to detect Atrial Fibrillation. CNNs have high requirements on computing and memory resources, which usually demand the use of High Performance Computing (eg, GPUs). This high energy demand is a challenge for portable devices. Therefore, efficient hardware implementations are required. We propose a computational architecture for the inference of a Quantized Convolutional Neural Network (Q-CNN) that allows the detection of the Atrial Fibrillation (AF). The architecture exploits data-level parallelism by incorporating SIMD-based vector units, which is optimized in terms of computation and storage and also optimized to perform both the convolutional and fully connected layers. The computational architecture was implemented and tested in a Xilinx Artix-7 FPGA. We present the experimental results regarding the quantization process in a different number of bits, hardware resources, and precision. The results show an accuracy of 94% accuracy for 22-bits. This work aims to be the basis for the future implementation of a portable, low-cost, and high-reliability device for the diagnosis of Atrial Fibrillation.La fibrilación auricular es una arritmia cardíaca común, que se caracte-riza por un ritmo cardíaco anormal que puede poner en peligro la vida.Recientemente, se han propuesto varias Redes Neuronales Convoluciona-les (CNNs, por sus siglas en inglés) para detectar la fibrilación auricular.Las CNN tienen altos requisitos de recursos informáticos y de memoria,lo que generalmente demanda el uso Computación de Altro Rendimientocomo por ejemplo GPUs. Esta alta demanda de energía es un desafío pa-ra los dispositivos portátiles. Por lo tanto, se requieren implementacionesde hardware eficientes. Proponemos una arquitectura computacional pa-ra la inferencia de una Red Neural Convolucional Cuantizada (Q-CNN)que permite la detección de la Fibrilación Auricular (FA). La arquitecturaaprovecha el paralelismo a nivel de datos, incorporando unidades vecto-riales basadas en SIMD, que están optimizadas en términos de cálculoy almacenamiento. El diseño también se optimizó para realizar tanto lascapas convolucionales como las capas completamente conectadas. La ar-quitectura computacional se implementó y probó en una FPGA XilinxArtix-7. Presentamos los resultados experimentales con respecto al proce-so de cuantización en un número diferente de bits, recursos de hardwarey precisión. Los resultados muestran una precisión del 94 % para 22 bits.Este trabajo pretende ser la base para la futura implementación de undispositivo portátil, de bajo costo y alta confiabilidad para el diagnósticode Fibrilación Auricular.application/pdfengUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6372/5064https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6372/5064Copyright © 2020 Andrés F Jaramillo-Rueda, Laura Y Vargas-Pacheco, Carlos A Fajardoinfo:eu-repo/semantics/openAccessAcceso abiertohttp://purl.org/coar/access_right/c_abf2Revista Ingeniería y Ciencias, Vol. 16 Núm. 32 (2020)A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial FibrillationArquitectura Computacional para la Inferencia deuna CNN Cuantizada para Detectar FibrilaciónAuriculararticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Atrial fibrillationAutomatic detectionFPGA implementationQuantized Convolutional Neural NetworkDetección automáticafibrilación auricularimplementación en FPGAred neuronal convolucional cuantizadaJaramillo-Rueda, Andrés FVargas-Pacheco, Laura YFajardo, Carlos A.Universidad Industrial de SantanderIngeniería y Ciencias1632135149THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/5852de60-3abc-47a5-92f9-ac59dbfc123f/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument - 2021-04-28T220947.324.pdfdocument - 2021-04-28T220947.324.pdfPDF Completoapplication/pdf841914https://repository.eafit.edu.co/bitstreams/c127f380-0efe-43ae-85ef-44fe54062b13/downloadfedcbe84846cf3324ce3cdfa452f459cMD52articulo - copia (6).htmlarticulo - copia (6).htmlHTML Completotext/html375https://repository.eafit.edu.co/bitstreams/308dd934-c756-49ee-844d-95b9a753fa52/download150cd14d4fe5a87fe9df03411683ba28MD5310784/25808oai:repository.eafit.edu.co:10784/258082021-04-28 22:11:41.608open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co