Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE)
In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation are usually chosen empirically or based on un planned experiments -- Algorithms' performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury's...
- Autores:
-
Acosta, Diego
Congote, John
Barandiaran, Iñigo
Ruíz, Óscar
Hoyos, Alejandro
Graña, Manuel
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9678
- Acceso en línea:
- http://hdl.handle.net/10784/9678
- Palabra clave:
- ESTIMACIÓN DE PARÁMETROS
ALGORITMOS
PROCESAMIENTO DE IMÁGENES
DISEÑO EXPERIMENTAL
Parameter estimation
Algorithms
Image processing
Experimental design
Parameter estimation
Algorithms
Image processing
Experimental design
Mapas de profundidad
Visión estéreo
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_dc1fe76413413f6f6d1aca6fc5f71bf1 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9678 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2016-11-18T22:11:15Z2013-092016-11-18T22:11:15Z0924-9907http://hdl.handle.net/10784/967810.1007/s10851-012-0366-7In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation are usually chosen empirically or based on un planned experiments -- Algorithms' performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury's standards -- This work shows a systematic statistical approach including exploratory data analyses on over 14000 images and designs of experiments using 31 depth maps to measure the relative inf uence of the parameters and to fine-tune them based on the number of bad pixels -- The implemented methodology improves the performance of adaptive weight based dense depth map algorithms -- As a result, the algorithm improves from 16.78% to 14.48% bad pixels using a classical exploratory data analysis of over 14000 existing images, while using designs of computer experiments with 31 runs yielded an even better performance by lowering bad pixels from 16.78% to 13%application/pdfengSpringer VerlagJournal of Mathematical Imaging and Vision, Volume 47, Issue 1, pp 3-12http://link.springer.com/article/10.1007/s10851-012-0366-7Acceso abiertohttp://purl.org/coar/access_right/c_abf2Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE)info:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1ESTIMACIÓN DE PARÁMETROSALGORITMOSPROCESAMIENTO DE IMÁGENESDISEÑO EXPERIMENTALParameter estimationAlgorithmsImage processingExperimental designParameter estimationAlgorithmsImage processingExperimental designMapas de profundidadVisión estéreoUniversidad EAFIT. Departamento de Ingeniería MecánicaAcosta, Diegof1b064dc-e95d-4d07-800f-160066df0118-1Congote, John588d9e98-6192-418e-aa08-df7d830cad54-1Barandiaran, Iñigo710349fd-cf52-4631-b045-e36a17ba1ad6-1Ruíz, Óscara8d48cf1-e401-48e5-b392-bd3abbc52d1d-1Hoyos, Alejandro2fc60c02-64d2-4aaf-b2c9-5e367f9f029a-1Graña, Manuel937a2cf6-b4a1-4a4e-9ae9-b5e72338edcb-1Laboratorio CAD/CAM/CAEJournal of Mathematical Imaging and VisionJournal of Mathematical Imaging and Vision471312LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/d8aa22f4-9324-49cd-bd47-80056dcbbaac/download76025f86b095439b7ac65b367055d40cMD51ORIGINALDraft_Design_Comp_Experiments_Depth.pdfDraft_Design_Comp_Experiments_Depth.pdfapplication/pdf1908455https://repository.eafit.edu.co/bitstreams/06afe825-7ef8-46d7-b88c-b1e1bea4c030/download65d72a0538b87b6a12bc66d364a55b13MD5210784/9678oai:repository.eafit.edu.co:10784/96782024-12-04 11:50:13.871open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) |
title |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) |
spellingShingle |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) ESTIMACIÓN DE PARÁMETROS ALGORITMOS PROCESAMIENTO DE IMÁGENES DISEÑO EXPERIMENTAL Parameter estimation Algorithms Image processing Experimental design Parameter estimation Algorithms Image processing Experimental design Mapas de profundidad Visión estéreo |
title_short |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) |
title_full |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) |
title_fullStr |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) |
title_full_unstemmed |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) |
title_sort |
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) |
dc.creator.fl_str_mv |
Acosta, Diego Congote, John Barandiaran, Iñigo Ruíz, Óscar Hoyos, Alejandro Graña, Manuel |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Acosta, Diego Congote, John Barandiaran, Iñigo Ruíz, Óscar Hoyos, Alejandro Graña, Manuel |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
ESTIMACIÓN DE PARÁMETROS ALGORITMOS PROCESAMIENTO DE IMÁGENES DISEÑO EXPERIMENTAL |
topic |
ESTIMACIÓN DE PARÁMETROS ALGORITMOS PROCESAMIENTO DE IMÁGENES DISEÑO EXPERIMENTAL Parameter estimation Algorithms Image processing Experimental design Parameter estimation Algorithms Image processing Experimental design Mapas de profundidad Visión estéreo |
dc.subject.keyword.spa.fl_str_mv |
Parameter estimation Algorithms Image processing Experimental design |
dc.subject.keyword.eng.fl_str_mv |
Parameter estimation Algorithms Image processing Experimental design |
dc.subject.keyword..keywor.fl_str_mv |
Mapas de profundidad Visión estéreo |
description |
In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation are usually chosen empirically or based on un planned experiments -- Algorithms' performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury's standards -- This work shows a systematic statistical approach including exploratory data analyses on over 14000 images and designs of experiments using 31 depth maps to measure the relative inf uence of the parameters and to fine-tune them based on the number of bad pixels -- The implemented methodology improves the performance of adaptive weight based dense depth map algorithms -- As a result, the algorithm improves from 16.78% to 14.48% bad pixels using a classical exploratory data analysis of over 14000 existing images, while using designs of computer experiments with 31 runs yielded an even better performance by lowering bad pixels from 16.78% to 13% |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-09 |
dc.date.available.none.fl_str_mv |
2016-11-18T22:11:15Z |
dc.date.accessioned.none.fl_str_mv |
2016-11-18T22:11:15Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0924-9907 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9678 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s10851-012-0366-7 |
identifier_str_mv |
0924-9907 10.1007/s10851-012-0366-7 |
url |
http://hdl.handle.net/10784/9678 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Journal of Mathematical Imaging and Vision, Volume 47, Issue 1, pp 3-12 |
dc.relation.uri.none.fl_str_mv |
http://link.springer.com/article/10.1007/s10851-012-0366-7 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/d8aa22f4-9324-49cd-bd47-80056dcbbaac/download https://repository.eafit.edu.co/bitstreams/06afe825-7ef8-46d7-b88c-b1e1bea4c030/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 65d72a0538b87b6a12bc66d364a55b13 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102436433231872 |