Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech

We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-...

Full description

Autores:
Campo, D.
Quintero, O.L.
Bastidas, M
Campo, D.
Quintero, O.L.
Bastidas, M
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/8374
Acceso en línea:
http://hdl.handle.net/10784/8374
Palabra clave:
Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
RECONOCIMIENTO AUTOMÁTICO DE LA VOZ
PROCESAMIENTO DE SEÑALES
INTELIGENCIA ARTIFICIAL
EMOCIONES
ANÁLISIS ESPECTRAL
REDES NEURALES (COMPUTADORES)
ANÁLISIS DE FOURIER
INTELIGENCIA ARTIFICIAL
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
Rights
License
Acceso abierto
id REPOEAFIT2_db19651b94372e97e4bce45feeb6785b
oai_identifier_str oai:repository.eafit.edu.co:10784/8374
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 20162016-05-11T20:44:09Z20162016-05-11T20:44:09Z1742-6596http://hdl.handle.net/10784/837410.1088/1742-6596/705/1/012034We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify20th Argentinean Bioengineering Society Congress, SABI 2015 (XX Congreso Argentino de Bioingeniería y IX Jornadas de Ingeniería Clínica)28–30 October 2015, San Nicolás de los Arroyos, Argentinaapplication/pdfengIOP PublishingJournal of Physics: Conference Series; Vol. 705, Núm. 1 (2016); pp.7http://dx.doi.org/10.1088/1742-6596/705/1/012034http://dx.doi.org/10.1088/1742-6596/705/1/012034Journal of Physics: Conference SeriesTransformadas de WaveletAnálisis Multi - ResoluciónProcesamiento digital de vozRECONOCIMIENTO AUTOMÁTICO DE LA VOZPROCESAMIENTO DE SEÑALESINTELIGENCIA ARTIFICIALEMOCIONESANÁLISIS ESPECTRALREDES NEURALES (COMPUTADORES)ANÁLISIS DE FOURIERINTELIGENCIA ARTIFICIALAutomatic speech recognitionSignal processingArtificial intelligenceEmotionsSpectrum analysisNeural networks (Computer science)Fourier analysisArtificial intelligenceAutomatic speech recognitionSignal processingArtificial intelligenceEmotionsSpectrum analysisNeural networks (Computer science)Fourier analysisArtificial intelligenceTransformadas de WaveletAnálisis Multi - ResoluciónProcesamiento digital de vozMultiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speechinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlearticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acceso abiertoCreative Commons Attribution 3.0 licence (CC BY 3.0)http://purl.org/coar/access_right/c_abf2Universidad EAFIT. Escuela de Cienciasdcampoc@eafit.edu.cooquinte1@eafit.edu.combastida@eafit.edu.coCampo, D.Quintero, O.L.Bastidas, MCampo, D.Quintero, O.L.Bastidas, MDipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN). Information and Signal Processing for Cognitive Telecommunications ISIP40, Genova, ItalyMathematical Modeling Research Group at Mathematical Sciences Department in School of Sciences at Universidad EAFIT, Medellín, ColombiaModelado MatemáticoJournal of Physics: Conference Series705117ORIGINALJPCS_705_1_012034.pdfJPCS_705_1_012034.pdfTexto completoapplication/pdf761027https://repository.eafit.edu.co/bitstreams/613b717d-53dc-4565-9636-2bf32bbd7eb6/download688d62cd5d54d603f7df386adf0474dfMD5110784/8374oai:repository.eafit.edu.co:10784/83742022-08-26 09:42:03.752open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
title Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
spellingShingle Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
RECONOCIMIENTO AUTOMÁTICO DE LA VOZ
PROCESAMIENTO DE SEÑALES
INTELIGENCIA ARTIFICIAL
EMOCIONES
ANÁLISIS ESPECTRAL
REDES NEURALES (COMPUTADORES)
ANÁLISIS DE FOURIER
INTELIGENCIA ARTIFICIAL
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
title_short Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
title_full Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
title_fullStr Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
title_full_unstemmed Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
title_sort Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
dc.creator.fl_str_mv Campo, D.
Quintero, O.L.
Bastidas, M
Campo, D.
Quintero, O.L.
Bastidas, M
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Escuela de Ciencias
dc.contributor.eafitauthor.none.fl_str_mv dcampoc@eafit.edu.co
oquinte1@eafit.edu.co
mbastida@eafit.edu.co
dc.contributor.author.spa.fl_str_mv Campo, D.
Quintero, O.L.
Bastidas, M
dc.contributor.author.none.fl_str_mv Campo, D.
Quintero, O.L.
Bastidas, M
dc.contributor.affiliation.spa.fl_str_mv Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN). Information and Signal Processing for Cognitive Telecommunications ISIP40, Genova, Italy
Mathematical Modeling Research Group at Mathematical Sciences Department in School of Sciences at Universidad EAFIT, Medellín, Colombia
dc.contributor.researchgroup.spa.fl_str_mv Modelado Matemático
dc.subject.none.fl_str_mv Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
topic Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
RECONOCIMIENTO AUTOMÁTICO DE LA VOZ
PROCESAMIENTO DE SEÑALES
INTELIGENCIA ARTIFICIAL
EMOCIONES
ANÁLISIS ESPECTRAL
REDES NEURALES (COMPUTADORES)
ANÁLISIS DE FOURIER
INTELIGENCIA ARTIFICIAL
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
dc.subject.lemb.none.fl_str_mv RECONOCIMIENTO AUTOMÁTICO DE LA VOZ
PROCESAMIENTO DE SEÑALES
INTELIGENCIA ARTIFICIAL
EMOCIONES
ANÁLISIS ESPECTRAL
REDES NEURALES (COMPUTADORES)
ANÁLISIS DE FOURIER
INTELIGENCIA ARTIFICIAL
dc.subject.keyword.none.fl_str_mv Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
dc.subject.keyword.eng.fl_str_mv Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
dc.subject.keyword.spa.fl_str_mv Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
description We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify
publishDate 2016
dc.date.available.none.fl_str_mv 2016-05-11T20:44:09Z
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2016-05-11T20:44:09Z
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
article
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1742-6596
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/8374
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/705/1/012034
identifier_str_mv 1742-6596
10.1088/1742-6596/705/1/012034
url http://hdl.handle.net/10784/8374
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Journal of Physics: Conference Series; Vol. 705, Núm. 1 (2016); pp.7
dc.relation.isversionof.none.fl_str_mv http://dx.doi.org/10.1088/1742-6596/705/1/012034
dc.relation.uri.none.fl_str_mv http://dx.doi.org/10.1088/1742-6596/705/1/012034
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.license.eng.fl_str_mv Creative Commons Attribution 3.0 licence (CC BY 3.0)
rights_invalid_str_mv Acceso abierto
Creative Commons Attribution 3.0 licence (CC BY 3.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv Journal of Physics: Conference Series
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/613b717d-53dc-4565-9636-2bf32bbd7eb6/download
bitstream.checksum.fl_str_mv 688d62cd5d54d603f7df386adf0474df
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110276353523712