Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-...
- Autores:
-
Campo, D.
Quintero, O.L.
Bastidas, M
Campo, D.
Quintero, O.L.
Bastidas, M
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/8374
- Acceso en línea:
- http://hdl.handle.net/10784/8374
- Palabra clave:
- Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
RECONOCIMIENTO AUTOMÁTICO DE LA VOZ
PROCESAMIENTO DE SEÑALES
INTELIGENCIA ARTIFICIAL
EMOCIONES
ANÁLISIS ESPECTRAL
REDES NEURALES (COMPUTADORES)
ANÁLISIS DE FOURIER
INTELIGENCIA ARTIFICIAL
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Automatic speech recognition
Signal processing
Artificial intelligence
Emotions
Spectrum analysis
Neural networks (Computer science)
Fourier analysis
Artificial intelligence
Transformadas de Wavelet
Análisis Multi - Resolución
Procesamiento digital de voz
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_db19651b94372e97e4bce45feeb6785b |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/8374 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
20162016-05-11T20:44:09Z20162016-05-11T20:44:09Z1742-6596http://hdl.handle.net/10784/837410.1088/1742-6596/705/1/012034We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify20th Argentinean Bioengineering Society Congress, SABI 2015 (XX Congreso Argentino de Bioingeniería y IX Jornadas de Ingeniería Clínica)28–30 October 2015, San Nicolás de los Arroyos, Argentinaapplication/pdfengIOP PublishingJournal of Physics: Conference Series; Vol. 705, Núm. 1 (2016); pp.7http://dx.doi.org/10.1088/1742-6596/705/1/012034http://dx.doi.org/10.1088/1742-6596/705/1/012034Journal of Physics: Conference SeriesTransformadas de WaveletAnálisis Multi - ResoluciónProcesamiento digital de vozRECONOCIMIENTO AUTOMÁTICO DE LA VOZPROCESAMIENTO DE SEÑALESINTELIGENCIA ARTIFICIALEMOCIONESANÁLISIS ESPECTRALREDES NEURALES (COMPUTADORES)ANÁLISIS DE FOURIERINTELIGENCIA ARTIFICIALAutomatic speech recognitionSignal processingArtificial intelligenceEmotionsSpectrum analysisNeural networks (Computer science)Fourier analysisArtificial intelligenceAutomatic speech recognitionSignal processingArtificial intelligenceEmotionsSpectrum analysisNeural networks (Computer science)Fourier analysisArtificial intelligenceTransformadas de WaveletAnálisis Multi - ResoluciónProcesamiento digital de vozMultiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speechinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlearticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acceso abiertoCreative Commons Attribution 3.0 licence (CC BY 3.0)http://purl.org/coar/access_right/c_abf2Universidad EAFIT. Escuela de Cienciasdcampoc@eafit.edu.cooquinte1@eafit.edu.combastida@eafit.edu.coCampo, D.Quintero, O.L.Bastidas, MCampo, D.Quintero, O.L.Bastidas, MDipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN). Information and Signal Processing for Cognitive Telecommunications ISIP40, Genova, ItalyMathematical Modeling Research Group at Mathematical Sciences Department in School of Sciences at Universidad EAFIT, Medellín, ColombiaModelado MatemáticoJournal of Physics: Conference Series705117ORIGINALJPCS_705_1_012034.pdfJPCS_705_1_012034.pdfTexto completoapplication/pdf761027https://repository.eafit.edu.co/bitstreams/613b717d-53dc-4565-9636-2bf32bbd7eb6/download688d62cd5d54d603f7df386adf0474dfMD5110784/8374oai:repository.eafit.edu.co:10784/83742022-08-26 09:42:03.752open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech |
title |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech |
spellingShingle |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech Transformadas de Wavelet Análisis Multi - Resolución Procesamiento digital de voz RECONOCIMIENTO AUTOMÁTICO DE LA VOZ PROCESAMIENTO DE SEÑALES INTELIGENCIA ARTIFICIAL EMOCIONES ANÁLISIS ESPECTRAL REDES NEURALES (COMPUTADORES) ANÁLISIS DE FOURIER INTELIGENCIA ARTIFICIAL Automatic speech recognition Signal processing Artificial intelligence Emotions Spectrum analysis Neural networks (Computer science) Fourier analysis Artificial intelligence Automatic speech recognition Signal processing Artificial intelligence Emotions Spectrum analysis Neural networks (Computer science) Fourier analysis Artificial intelligence Transformadas de Wavelet Análisis Multi - Resolución Procesamiento digital de voz |
title_short |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech |
title_full |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech |
title_fullStr |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech |
title_full_unstemmed |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech |
title_sort |
Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech |
dc.creator.fl_str_mv |
Campo, D. Quintero, O.L. Bastidas, M Campo, D. Quintero, O.L. Bastidas, M |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Escuela de Ciencias |
dc.contributor.eafitauthor.none.fl_str_mv |
dcampoc@eafit.edu.co oquinte1@eafit.edu.co mbastida@eafit.edu.co |
dc.contributor.author.spa.fl_str_mv |
Campo, D. Quintero, O.L. Bastidas, M |
dc.contributor.author.none.fl_str_mv |
Campo, D. Quintero, O.L. Bastidas, M |
dc.contributor.affiliation.spa.fl_str_mv |
Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN). Information and Signal Processing for Cognitive Telecommunications ISIP40, Genova, Italy Mathematical Modeling Research Group at Mathematical Sciences Department in School of Sciences at Universidad EAFIT, Medellín, Colombia |
dc.contributor.researchgroup.spa.fl_str_mv |
Modelado Matemático |
dc.subject.none.fl_str_mv |
Transformadas de Wavelet Análisis Multi - Resolución Procesamiento digital de voz |
topic |
Transformadas de Wavelet Análisis Multi - Resolución Procesamiento digital de voz RECONOCIMIENTO AUTOMÁTICO DE LA VOZ PROCESAMIENTO DE SEÑALES INTELIGENCIA ARTIFICIAL EMOCIONES ANÁLISIS ESPECTRAL REDES NEURALES (COMPUTADORES) ANÁLISIS DE FOURIER INTELIGENCIA ARTIFICIAL Automatic speech recognition Signal processing Artificial intelligence Emotions Spectrum analysis Neural networks (Computer science) Fourier analysis Artificial intelligence Automatic speech recognition Signal processing Artificial intelligence Emotions Spectrum analysis Neural networks (Computer science) Fourier analysis Artificial intelligence Transformadas de Wavelet Análisis Multi - Resolución Procesamiento digital de voz |
dc.subject.lemb.none.fl_str_mv |
RECONOCIMIENTO AUTOMÁTICO DE LA VOZ PROCESAMIENTO DE SEÑALES INTELIGENCIA ARTIFICIAL EMOCIONES ANÁLISIS ESPECTRAL REDES NEURALES (COMPUTADORES) ANÁLISIS DE FOURIER INTELIGENCIA ARTIFICIAL |
dc.subject.keyword.none.fl_str_mv |
Automatic speech recognition Signal processing Artificial intelligence Emotions Spectrum analysis Neural networks (Computer science) Fourier analysis Artificial intelligence |
dc.subject.keyword.eng.fl_str_mv |
Automatic speech recognition Signal processing Artificial intelligence Emotions Spectrum analysis Neural networks (Computer science) Fourier analysis Artificial intelligence |
dc.subject.keyword.spa.fl_str_mv |
Transformadas de Wavelet Análisis Multi - Resolución Procesamiento digital de voz |
description |
We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016-05-11T20:44:09Z |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2016-05-11T20:44:09Z |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion article |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1742-6596 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/8374 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/705/1/012034 |
identifier_str_mv |
1742-6596 10.1088/1742-6596/705/1/012034 |
url |
http://hdl.handle.net/10784/8374 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Journal of Physics: Conference Series; Vol. 705, Núm. 1 (2016); pp.7 |
dc.relation.isversionof.none.fl_str_mv |
http://dx.doi.org/10.1088/1742-6596/705/1/012034 |
dc.relation.uri.none.fl_str_mv |
http://dx.doi.org/10.1088/1742-6596/705/1/012034 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.license.eng.fl_str_mv |
Creative Commons Attribution 3.0 licence (CC BY 3.0) |
rights_invalid_str_mv |
Acceso abierto Creative Commons Attribution 3.0 licence (CC BY 3.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/613b717d-53dc-4565-9636-2bf32bbd7eb6/download |
bitstream.checksum.fl_str_mv |
688d62cd5d54d603f7df386adf0474df |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110276353523712 |