Fixed grid finite element analysis for 3D structural problems

Fixed Grid (FG) methodology was first introduced by García and Steven as an engine for numerical estimation of two-dimensional elasticity problems -- The advantages of using FG are simplicity and speed at a permissible level of accuracy -- Two dimensional FG has been proved effective in approximatin...

Full description

Autores:
García, Manuel J.
Henao, Miguel A.
Ruíz, Óscar E.
Tipo de recurso:
Fecha de publicación:
2005
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9692
Acceso en línea:
http://hdl.handle.net/10784/9692
Palabra clave:
TOPOLOGÍA
MÉTODO DE ELEMENTOS FINITOS
OPTIMIZACIÓN ESTRUCTURAL
PROCESOS DE POISSON
Topology
Finite element method
Structural optimization
Poisson processes
Topology
Finite element method
Structural optimization
Poisson processes
Triangulación de Delaunay
3D (Programas para computador)
Rights
License
Acceso abierto
id REPOEAFIT2_cdbe304a9fe3d321ddb99332a1a91072
oai_identifier_str oai:repository.eafit.edu.co:10784/9692
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Fixed grid finite element analysis for 3D structural problems
title Fixed grid finite element analysis for 3D structural problems
spellingShingle Fixed grid finite element analysis for 3D structural problems
TOPOLOGÍA
MÉTODO DE ELEMENTOS FINITOS
OPTIMIZACIÓN ESTRUCTURAL
PROCESOS DE POISSON
Topology
Finite element method
Structural optimization
Poisson processes
Topology
Finite element method
Structural optimization
Poisson processes
Triangulación de Delaunay
3D (Programas para computador)
title_short Fixed grid finite element analysis for 3D structural problems
title_full Fixed grid finite element analysis for 3D structural problems
title_fullStr Fixed grid finite element analysis for 3D structural problems
title_full_unstemmed Fixed grid finite element analysis for 3D structural problems
title_sort Fixed grid finite element analysis for 3D structural problems
dc.creator.fl_str_mv García, Manuel J.
Henao, Miguel A.
Ruíz, Óscar E.
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv García, Manuel J.
Henao, Miguel A.
Ruíz, Óscar E.
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv TOPOLOGÍA
MÉTODO DE ELEMENTOS FINITOS
OPTIMIZACIÓN ESTRUCTURAL
PROCESOS DE POISSON
topic TOPOLOGÍA
MÉTODO DE ELEMENTOS FINITOS
OPTIMIZACIÓN ESTRUCTURAL
PROCESOS DE POISSON
Topology
Finite element method
Structural optimization
Poisson processes
Topology
Finite element method
Structural optimization
Poisson processes
Triangulación de Delaunay
3D (Programas para computador)
dc.subject.keyword.spa.fl_str_mv Topology
Finite element method
Structural optimization
Poisson processes
dc.subject.keyword.eng.fl_str_mv Topology
Finite element method
Structural optimization
Poisson processes
dc.subject.keyword..keywor.fl_str_mv Triangulación de Delaunay
3D (Programas para computador)
description Fixed Grid (FG) methodology was first introduced by García and Steven as an engine for numerical estimation of two-dimensional elasticity problems -- The advantages of using FG are simplicity and speed at a permissible level of accuracy -- Two dimensional FG has been proved effective in approximating the strain and stress field with low requirements of time and computational resources -- Moreover, FG has been used as the analytical kernel for different structural optimisation methods as Evolutionary Structural Optimisation, Genetic Algorithms (GA), and Evolutionary Strategies -- FG consists of dividing the bounding box of the topology of an object into a set of equally sized cubic elements -- Elements are assessed to be inside (I), outside (O) or neither inside nor outside (NIO) of the object -- Different material properties assigned to the inside and outside medium transform the problem into a multi-material elasticity problem -- As a result of the subdivision NIO elements have non-continuous properties -- They can be approximated in different ways which range from simple setting of NIO elements as O to complex noncontinuous domain integration -- If homogeneously averaged material properties are used to approximate the NIO element, the element stiffness matrix can be computed as a factor of a standard stiffness matrix thus reducing the computational cost of creating the global stiffness matrix. An additional advantage of FG is found when accomplishing re-analysis, since there is no need to recompute the whole stiffness matrix when the geometry changes -- This article presents CAD to FG conversion and the stiffness matrix computation based on non-continuous elements -- In addition inclusion/exclusion of O elements in the global stiffness matrix is studied -- Preliminary results shown that non-continuous NIO elements improve the accuracy of the results with considerable savings in time -- Numerical examples are presented to illustrate the possibilities of the method
publishDate 2005
dc.date.issued.none.fl_str_mv 2005
dc.date.available.none.fl_str_mv 2016-11-18T22:27:28Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T22:27:28Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0219-8762
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9692
dc.identifier.doi.none.fl_str_mv 10.1142/S0219876205000582
identifier_str_mv 0219-8762
10.1142/S0219876205000582
url http://hdl.handle.net/10784/9692
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv International Journal of Computational Methods, Volume 2, Issue 4, pp. 569-586
dc.relation.uri.none.fl_str_mv http://dx.doi.org/10.1142/S0219876205000582
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv World Scientific Publishing Co.
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/2b443101-96ef-476b-8fbc-ae1aabba06e8/download
https://repository.eafit.edu.co/bitstreams/b8d595a8-3fe4-4732-b3a0-d7381fe3b1da/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
2f008ff8cca0109fd3bd341c698af8ab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110633513189376
spelling 2016-11-18T22:27:28Z20052016-11-18T22:27:28Z0219-8762http://hdl.handle.net/10784/969210.1142/S0219876205000582Fixed Grid (FG) methodology was first introduced by García and Steven as an engine for numerical estimation of two-dimensional elasticity problems -- The advantages of using FG are simplicity and speed at a permissible level of accuracy -- Two dimensional FG has been proved effective in approximating the strain and stress field with low requirements of time and computational resources -- Moreover, FG has been used as the analytical kernel for different structural optimisation methods as Evolutionary Structural Optimisation, Genetic Algorithms (GA), and Evolutionary Strategies -- FG consists of dividing the bounding box of the topology of an object into a set of equally sized cubic elements -- Elements are assessed to be inside (I), outside (O) or neither inside nor outside (NIO) of the object -- Different material properties assigned to the inside and outside medium transform the problem into a multi-material elasticity problem -- As a result of the subdivision NIO elements have non-continuous properties -- They can be approximated in different ways which range from simple setting of NIO elements as O to complex noncontinuous domain integration -- If homogeneously averaged material properties are used to approximate the NIO element, the element stiffness matrix can be computed as a factor of a standard stiffness matrix thus reducing the computational cost of creating the global stiffness matrix. An additional advantage of FG is found when accomplishing re-analysis, since there is no need to recompute the whole stiffness matrix when the geometry changes -- This article presents CAD to FG conversion and the stiffness matrix computation based on non-continuous elements -- In addition inclusion/exclusion of O elements in the global stiffness matrix is studied -- Preliminary results shown that non-continuous NIO elements improve the accuracy of the results with considerable savings in time -- Numerical examples are presented to illustrate the possibilities of the methodapplication/pdfengWorld Scientific Publishing Co.International Journal of Computational Methods, Volume 2, Issue 4, pp. 569-586http://dx.doi.org/10.1142/S0219876205000582Acceso abiertohttp://purl.org/coar/access_right/c_abf2Fixed grid finite element analysis for 3D structural problemsinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículoacceptedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1TOPOLOGÍAMÉTODO DE ELEMENTOS FINITOSOPTIMIZACIÓN ESTRUCTURALPROCESOS DE POISSONTopologyFinite element methodStructural optimizationPoisson processesTopologyFinite element methodStructural optimizationPoisson processesTriangulación de Delaunay3D (Programas para computador)Universidad EAFIT. Departamento de Ingeniería MecánicaGarcía, Manuel J.Henao, Miguel A.Ruíz, Óscar E.Laboratorio CAD/CAM/CAEInternational Journal of Computational MethodsInternational Journal of Computational Methods24569586LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/2b443101-96ef-476b-8fbc-ae1aabba06e8/download76025f86b095439b7ac65b367055d40cMD51ORIGINALFixed_Grid_Finite_Element_Analysis_for_3D_Structural_Problems.pdfFixed_Grid_Finite_Element_Analysis_for_3D_Structural_Problems.pdfVersión incompletaapplication/pdf419884https://repository.eafit.edu.co/bitstreams/b8d595a8-3fe4-4732-b3a0-d7381fe3b1da/download2f008ff8cca0109fd3bd341c698af8abMD5210784/9692oai:repository.eafit.edu.co:10784/96922021-09-03 15:43:56.368open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK