Multistage game models and delay supergames
The order of stages in a multistage game is often interpreted by looking at earlier stages as involving more long term decisions. For the purpose of making this interpretation precise, the notion of a delay supergame of a bounded multistage game is introduced. A multistage game is bounded if the len...
- Autores:
-
Selten, Reinhard
- Tipo de recurso:
- Fecha de publicación:
- 1995
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/16503
- Acceso en línea:
- http://hdl.handle.net/10784/16503
- Palabra clave:
- Rights
- License
- Copyright © 1995 Reinhard Selten
id |
REPOEAFIT2_ca49f62d94d29d1236066e7d993f0082 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/16503 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees19952020-06-11T18:17:03Z19952020-06-11T18:17:03Z0120-341Xhttp://hdl.handle.net/10784/16503The order of stages in a multistage game is often interpreted by looking at earlier stages as involving more long term decisions. For the purpose of making this interpretation precise, the notion of a delay supergame of a bounded multistage game is introduced. A multistage game is bounded if the length of play has an upper bound. A delay supergame is played over many periods. Decisions on all stages are made simultaneously, but with different delays until they become effective. The earlier the stage the longer the delay. A subgame perfect equilibrium of a bounded multistage game generates a subgame perfect equilibrium in every one of its delay supergames. This is the first main conclusion of the paper. A subgame perfect equilibrium set is a set of subgame perfect equilibria all of which yield the same payoffs, not only in the game as a whole, but also in each of its subgames. The second main conclusion concerns multistage games with a unique subgame perfect equilibrium set and their delay supergames which are bounded in the sense that the number of periods is finite. If a bounded multistage game has a unique subgame perfect equilibrium set, then the same is true for every one of its bounded delay supergames.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1369http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1369Copyright © 1995 Reinhard SeltenAcceso abiertohttp://purl.org/coar/access_right/c_abf2Revista Universidad EAFIT, Vol. 31, No. 97 (1995)Multistage game models and delay supergamesarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Selten, Reinhard34dd612d-8738-4463-887a-a68e1f5bcccb-1Universidad EAFITRevista Universidad EAFIT3197727THUMBNAILminiatura-rev-eafit.jpgminiatura-rev-eafit.jpgimage/jpeg118416https://repository.eafit.edu.co/bitstreams/a9815b20-9fe7-4e4f-b35f-73300e443b86/download9ac51cb2b5f275d90bbb40324068baabMD51ORIGINALdocument (25).pdfdocument (25).pdfTexto completo PDFapplication/pdf1375260https://repository.eafit.edu.co/bitstreams/793ff44e-459d-4dfc-a1a2-4d398a17d001/download5ade29edf8934b0a273b1f756e754ed4MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html390https://repository.eafit.edu.co/bitstreams/3bf01e27-1c77-4437-be36-78fd2e8364a4/download0d5721182603e6439d3e30d81858412aMD5310784/16503oai:repository.eafit.edu.co:10784/165032024-12-04 11:48:30.537open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Multistage game models and delay supergames |
title |
Multistage game models and delay supergames |
spellingShingle |
Multistage game models and delay supergames |
title_short |
Multistage game models and delay supergames |
title_full |
Multistage game models and delay supergames |
title_fullStr |
Multistage game models and delay supergames |
title_full_unstemmed |
Multistage game models and delay supergames |
title_sort |
Multistage game models and delay supergames |
dc.creator.fl_str_mv |
Selten, Reinhard |
dc.contributor.author.sp.fl_str_mv |
Selten, Reinhard |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad EAFIT |
description |
The order of stages in a multistage game is often interpreted by looking at earlier stages as involving more long term decisions. For the purpose of making this interpretation precise, the notion of a delay supergame of a bounded multistage game is introduced. A multistage game is bounded if the length of play has an upper bound. A delay supergame is played over many periods. Decisions on all stages are made simultaneously, but with different delays until they become effective. The earlier the stage the longer the delay. A subgame perfect equilibrium of a bounded multistage game generates a subgame perfect equilibrium in every one of its delay supergames. This is the first main conclusion of the paper. A subgame perfect equilibrium set is a set of subgame perfect equilibria all of which yield the same payoffs, not only in the game as a whole, but also in each of its subgames. The second main conclusion concerns multistage games with a unique subgame perfect equilibrium set and their delay supergames which are bounded in the sense that the number of periods is finite. If a bounded multistage game has a unique subgame perfect equilibrium set, then the same is true for every one of its bounded delay supergames. |
publishDate |
1995 |
dc.date.issued.none.fl_str_mv |
1995 |
dc.date.available.none.fl_str_mv |
2020-06-11T18:17:03Z |
dc.date.accessioned.none.fl_str_mv |
2020-06-11T18:17:03Z |
dc.date.none.fl_str_mv |
1995 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0120-341X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/16503 |
identifier_str_mv |
0120-341X |
url |
http://hdl.handle.net/10784/16503 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1369 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1369 |
dc.rights.eng.fl_str_mv |
Copyright © 1995 Reinhard Selten |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright © 1995 Reinhard Selten Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.spa.fl_str_mv |
Revista Universidad EAFIT, Vol. 31, No. 97 (1995) |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/a9815b20-9fe7-4e4f-b35f-73300e443b86/download https://repository.eafit.edu.co/bitstreams/793ff44e-459d-4dfc-a1a2-4d398a17d001/download https://repository.eafit.edu.co/bitstreams/3bf01e27-1c77-4437-be36-78fd2e8364a4/download |
bitstream.checksum.fl_str_mv |
9ac51cb2b5f275d90bbb40324068baab 5ade29edf8934b0a273b1f756e754ed4 0d5721182603e6439d3e30d81858412a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102403472293888 |