Statistical tuning of Adaptive-Weight Depth Map Algorithm

In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A systematic statistical approach including classical and exploratory data analyses on over 14000 images to measure the rela...

Full description

Autores:
Hoyos, Alejandro
Congote, John
Barandiaran, Iñigo
Acosta, Diego
Ruíz, Óscar
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9726
Acceso en línea:
http://hdl.handle.net/10784/9726
Palabra clave:
PROGRAMACIÓN HEURÍSTICA
PROCESAMIENTO DE IMÁGENES
ANÁLISIS MULTIVARIANTE
ANÁLISIS DE REGRESIÓN
ESTIMACIÓN DE PARÁMETROS
DISEÑO EXPERIMENTAL DE FACTORES
Heuristic programming
Image processing
Multivariate analysis
Regression analysis
Parameter estimation
Factorial experiments designs
Reconstrucción de la profundidad
Mapas de profundidad
Distancia Euclidiana
Visión estéreo
Rights
License
Acceso cerrado
id REPOEAFIT2_c9b56c58615d524a6a5dd5fd2cfc9e97
oai_identifier_str oai:repository.eafit.edu.co:10784/9726
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Statistical tuning of Adaptive-Weight Depth Map Algorithm
title Statistical tuning of Adaptive-Weight Depth Map Algorithm
spellingShingle Statistical tuning of Adaptive-Weight Depth Map Algorithm
PROGRAMACIÓN HEURÍSTICA
PROCESAMIENTO DE IMÁGENES
ANÁLISIS MULTIVARIANTE
ANÁLISIS DE REGRESIÓN
ESTIMACIÓN DE PARÁMETROS
DISEÑO EXPERIMENTAL DE FACTORES
Heuristic programming
Image processing
Multivariate analysis
Regression analysis
Parameter estimation
Factorial experiments designs
Reconstrucción de la profundidad
Mapas de profundidad
Distancia Euclidiana
Visión estéreo
title_short Statistical tuning of Adaptive-Weight Depth Map Algorithm
title_full Statistical tuning of Adaptive-Weight Depth Map Algorithm
title_fullStr Statistical tuning of Adaptive-Weight Depth Map Algorithm
title_full_unstemmed Statistical tuning of Adaptive-Weight Depth Map Algorithm
title_sort Statistical tuning of Adaptive-Weight Depth Map Algorithm
dc.creator.fl_str_mv Hoyos, Alejandro
Congote, John
Barandiaran, Iñigo
Acosta, Diego
Ruíz, Óscar
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Hoyos, Alejandro
Congote, John
Barandiaran, Iñigo
Acosta, Diego
Ruíz, Óscar
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv PROGRAMACIÓN HEURÍSTICA
PROCESAMIENTO DE IMÁGENES
ANÁLISIS MULTIVARIANTE
ANÁLISIS DE REGRESIÓN
ESTIMACIÓN DE PARÁMETROS
DISEÑO EXPERIMENTAL DE FACTORES
topic PROGRAMACIÓN HEURÍSTICA
PROCESAMIENTO DE IMÁGENES
ANÁLISIS MULTIVARIANTE
ANÁLISIS DE REGRESIÓN
ESTIMACIÓN DE PARÁMETROS
DISEÑO EXPERIMENTAL DE FACTORES
Heuristic programming
Image processing
Multivariate analysis
Regression analysis
Parameter estimation
Factorial experiments designs
Reconstrucción de la profundidad
Mapas de profundidad
Distancia Euclidiana
Visión estéreo
dc.subject.keyword.eng.fl_str_mv Heuristic programming
Image processing
Multivariate analysis
Regression analysis
Parameter estimation
Factorial experiments designs
dc.subject.keyword.spa.fl_str_mv Reconstrucción de la profundidad
Mapas de profundidad
Distancia Euclidiana
Visión estéreo
description In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A systematic statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad pixels -- Our approach is systematic in the sense that the heuristics used for parameter tuning are supported by formal statistical methods -- The implemented methodology improves the performance of dense depth map algorithms -- As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table -- The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury -- Future work aims to achieve the tuning by using signicantly smaller data sets on fractional factorial and surface-response designs of experiments
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.available.none.fl_str_mv 2016-11-18T22:54:00Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T22:54:00Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/bookPart
bookPart
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.local.spa.fl_str_mv Capítulo o parte de un libro
dc.type.hasVersion.spa.fl_str_mv Obra publicada
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv @incollection{acosta_springer_2011 year={2011}, isbn={978-3-642-23677-8}, booktitle={Computer Analysis of Images and Patterns}, volume={6855}, series={Lecture Notes in Computer Science}, editor={Real, Pedro and Diaz-Pernil, Daniel and Molina-Abril, Helena and Berciano, Ainhoa and Kropatsch, Walter}, doi={10.1007/978-3-642-23678-5_67}, title={Statistical Tuning of Adaptive-Weight Depth Map Algorithm}, url={http://dx.doi.org/10.1007/978-3-642-23678-5_67}, publisher={Springer Berlin Heidelberg}, keywords={Stereo Image Processing; Parameter Estimation; Depth Map}, author={Hoyos, Alejandro and Congote, John and Barandiaran, Iñigo and Acosta, Diego and Ruiz, Oscar}, pages={563-572}, language={English} }
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9726
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-642-23678-5_67
identifier_str_mv @incollection{acosta_springer_2011 year={2011}, isbn={978-3-642-23677-8}, booktitle={Computer Analysis of Images and Patterns}, volume={6855}, series={Lecture Notes in Computer Science}, editor={Real, Pedro and Diaz-Pernil, Daniel and Molina-Abril, Helena and Berciano, Ainhoa and Kropatsch, Walter}, doi={10.1007/978-3-642-23678-5_67}, title={Statistical Tuning of Adaptive-Weight Depth Map Algorithm}, url={http://dx.doi.org/10.1007/978-3-642-23678-5_67}, publisher={Springer Berlin Heidelberg}, keywords={Stereo Image Processing; Parameter Estimation; Depth Map}, author={Hoyos, Alejandro and Congote, John and Barandiaran, Iñigo and Acosta, Diego and Ruiz, Oscar}, pages={563-572}, language={English} }
10.1007/978-3-642-23678-5_67
url http://hdl.handle.net/10784/9726
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Computer Analysis of Images and Patterns
dc.relation.isversionof.spa.fl_str_mv http://www.dx.doi.org/10.1007/978-3-642-23678-5_67
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.local.spa.fl_str_mv Acceso cerrado
rights_invalid_str_mv Acceso cerrado
http://purl.org/coar/access_right/c_14cb
dc.format.eng.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Berlin Heidelberg
publisher.none.fl_str_mv Springer Berlin Heidelberg
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/25b0af7e-44ac-475e-a304-dd85ce1fad29/download
https://repository.eafit.edu.co/bitstreams/b0413108-96ef-4d2b-a703-29392b7e90d4/download
https://repository.eafit.edu.co/bitstreams/fc89a483-d00e-4260-b8dd-3a7dc8f047a3/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
ea46b6ef69d5939700d5d8b0a2c2ba38
485d7ed787828e56a09058cef212e501
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110266473840640
spelling 2016-11-18T22:54:00Z20112016-11-18T22:54:00Z@incollection{acosta_springer_2011 year={2011}, isbn={978-3-642-23677-8}, booktitle={Computer Analysis of Images and Patterns}, volume={6855}, series={Lecture Notes in Computer Science}, editor={Real, Pedro and Diaz-Pernil, Daniel and Molina-Abril, Helena and Berciano, Ainhoa and Kropatsch, Walter}, doi={10.1007/978-3-642-23678-5_67}, title={Statistical Tuning of Adaptive-Weight Depth Map Algorithm}, url={http://dx.doi.org/10.1007/978-3-642-23678-5_67}, publisher={Springer Berlin Heidelberg}, keywords={Stereo Image Processing; Parameter Estimation; Depth Map}, author={Hoyos, Alejandro and Congote, John and Barandiaran, Iñigo and Acosta, Diego and Ruiz, Oscar}, pages={563-572}, language={English} }http://hdl.handle.net/10784/972610.1007/978-3-642-23678-5_67In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A systematic statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad pixels -- Our approach is systematic in the sense that the heuristics used for parameter tuning are supported by formal statistical methods -- The implemented methodology improves the performance of dense depth map algorithms -- As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table -- The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury -- Future work aims to achieve the tuning by using signicantly smaller data sets on fractional factorial and surface-response designs of experiments563-572application/pdfengSpringer Berlin HeidelbergComputer Analysis of Images and Patternshttp://www.dx.doi.org/10.1007/978-3-642-23678-5_67Statistical tuning of Adaptive-Weight Depth Map Algorithminfo:eu-repo/semantics/bookPartbookPartinfo:eu-repo/semantics/publishedVersionpublishedVersionCapítulo o parte de un libroObra publicadahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Acceso cerradohttp://purl.org/coar/access_right/c_14cbPROGRAMACIÓN HEURÍSTICAPROCESAMIENTO DE IMÁGENESANÁLISIS MULTIVARIANTEANÁLISIS DE REGRESIÓNESTIMACIÓN DE PARÁMETROSDISEÑO EXPERIMENTAL DE FACTORESHeuristic programmingImage processingMultivariate analysisRegression analysisParameter estimationFactorial experiments designsReconstrucción de la profundidadMapas de profundidadDistancia EuclidianaVisión estéreoUniversidad EAFIT. Departamento de Ingeniería MecánicaHoyos, AlejandroCongote, JohnBarandiaran, IñigoAcosta, DiegoRuíz, ÓscarLaboratorio CAD/CAM/CAELICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/25b0af7e-44ac-475e-a304-dd85ce1fad29/download76025f86b095439b7ac65b367055d40cMD51ORIGINALstatistical_tuning_depth_algorithm.pdfstatistical_tuning_depth_algorithm.pdfVersión incompletaapplication/pdf1565940https://repository.eafit.edu.co/bitstreams/b0413108-96ef-4d2b-a703-29392b7e90d4/downloadea46b6ef69d5939700d5d8b0a2c2ba38MD52table_of_contents_computer_analysis_images_patterns.pdftable_of_contents_computer_analysis_images_patterns.pdfTabla de contenidosapplication/pdf184246https://repository.eafit.edu.co/bitstreams/fc89a483-d00e-4260-b8dd-3a7dc8f047a3/download485d7ed787828e56a09058cef212e501MD5310784/9726oai:repository.eafit.edu.co:10784/97262021-12-03 11:12:37.604restrictedhttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK