Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography
Regularization of the inverse problem is a complex issue when using Near-field Acoustic Holography (NAH) techniques to identify vibrating sources. This article aims to compare and implement various regularization methods in the context of NAH. Specifically, it compares commonly used Tikhonov regular...
- Autores:
-
Martinod, T.
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/34775
- Acceso en línea:
- https://hdl.handle.net/10784/34775
- Palabra clave:
- Holografía Acústica en el Campo Cercano
Problemas Mal Planteados
Regularización
Near-field Acoustic Holography
Posed problems
Regularization
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_c56e2398b6473fd311df440aff2f1abb |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/34775 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2024-11-06T21:43:22Z20242024-11-06T21:43:22Zhttps://hdl.handle.net/10784/34775Regularization of the inverse problem is a complex issue when using Near-field Acoustic Holography (NAH) techniques to identify vibrating sources. This article aims to compare and implement various regularization methods in the context of NAH. Specifically, it compares commonly used Tikhonov regularization, sparsity-based regularization, and neural networks (NN) regularization for a planar NAH array with measurements obtained from an experimental setup. Additionally, it theoretically introduces Green’s function-based regularization. The first three types of regularization methods yield images consistent with the results, and statistical indicators are used to determine which method performs best at different frequencies.La regularización del problema inverso es un tema complejo cuando se utilizan técnicas de Holografía Acústica en el Campo Cercano (NAH) para identificar fuentes vibratorias. Este artículo tiene como objetivo comparar e implementar varios métodos de regularización en el contexto de NAH. Específicamente, se comparan la regularización de Tikhonov, la regularización basada en la escasez y la regularización mediante redes neuronales (NN) para un arreglo NAH plano con mediciones obtenidas de un montaje experimental. Además, se introduce teóricamente la regularización basada en la función de Green. Los primeros tres tipos de métodos de regularización producen imágenes consistentes, y se utilizan indicadores estadísticos para determinar qué método tiene el mejor rendimiento a diferentes frecuencias.application/pdfengSound-Based Imaging Regularization Approaches in Near-field Acoustic HolographyImágenes Basadas en Sonido: Enfoques de Regularización en Holografía Acústica en el Campo CercanoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Acceso abiertohttp://purl.org/coar/access_right/c_abf2Holografía Acústica en el Campo CercanoProblemas Mal PlanteadosRegularizaciónNear-field Acoustic HolographyPosed problemsRegularizationMartinod, T.ae1a3589-6291-4c5e-9b4f-185bcf7fe7b2-1Universidad EAFITCuadernos de Ingeniería Matemática4ORIGINALSound-Based Imaging Regularization Approaches in Near-field Acoustic Holography.pdfArtículo Principalapplication/pdf738454https://repository.eafit.edu.co/bitstreams/0066b2fe-b7ec-4b94-9909-1882ad42ae60/downloadc5578a0b42bf0f27a5f41585a672ec6cMD51LICENSELicense.txtLicensetext/plain2584https://repository.eafit.edu.co/bitstreams/aa06119d-7ea5-4734-afd8-cf645799552b/downloaddb71ab3fdf552b62aa0a746cef2840e4MD52THUMBNAILPortada.pngPortadaimage/png1747211https://repository.eafit.edu.co/bitstreams/074b044e-0c4d-45c1-a00e-c9f8b3f2dfd3/download5bc3017473813e875879dcd10727c474MD5310784/34775oai:repository.eafit.edu.co:10784/347752024-12-04 11:49:59.506open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography |
dc.title.spa.fl_str_mv |
Imágenes Basadas en Sonido: Enfoques de Regularización en Holografía Acústica en el Campo Cercano |
title |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography |
spellingShingle |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography Holografía Acústica en el Campo Cercano Problemas Mal Planteados Regularización Near-field Acoustic Holography Posed problems Regularization |
title_short |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography |
title_full |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography |
title_fullStr |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography |
title_full_unstemmed |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography |
title_sort |
Sound-Based Imaging Regularization Approaches in Near-field Acoustic Holography |
dc.creator.fl_str_mv |
Martinod, T. |
dc.contributor.author.none.fl_str_mv |
Martinod, T. |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad EAFIT |
dc.subject.keyword.eng.fl_str_mv |
Holografía Acústica en el Campo Cercano Problemas Mal Planteados Regularización |
topic |
Holografía Acústica en el Campo Cercano Problemas Mal Planteados Regularización Near-field Acoustic Holography Posed problems Regularization |
dc.subject.keyword.spa.fl_str_mv |
Near-field Acoustic Holography Posed problems Regularization |
description |
Regularization of the inverse problem is a complex issue when using Near-field Acoustic Holography (NAH) techniques to identify vibrating sources. This article aims to compare and implement various regularization methods in the context of NAH. Specifically, it compares commonly used Tikhonov regularization, sparsity-based regularization, and neural networks (NN) regularization for a planar NAH array with measurements obtained from an experimental setup. Additionally, it theoretically introduces Green’s function-based regularization. The first three types of regularization methods yield images consistent with the results, and statistical indicators are used to determine which method performs best at different frequencies. |
publishDate |
2024 |
dc.date.available.none.fl_str_mv |
2024-11-06T21:43:22Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-06T21:43:22Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10784/34775 |
url |
https://hdl.handle.net/10784/34775 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.eng.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/0066b2fe-b7ec-4b94-9909-1882ad42ae60/download https://repository.eafit.edu.co/bitstreams/aa06119d-7ea5-4734-afd8-cf645799552b/download https://repository.eafit.edu.co/bitstreams/074b044e-0c4d-45c1-a00e-c9f8b3f2dfd3/download |
bitstream.checksum.fl_str_mv |
c5578a0b42bf0f27a5f41585a672ec6c db71ab3fdf552b62aa0a746cef2840e4 5bc3017473813e875879dcd10727c474 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102431676891136 |