Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand

In this paper we study the Tranport Network Design Problem (TNDP). It consists in finding the ideal combination of routes and frequencies that allow the decision maker to balance the interests of the users and the tran- sit operators, which are opposite. The TNDP uses as input a graph, with their tr...

Full description

Autores:
Garzón, Natalia Andrea
González Neira, Eliana María
Pérez Vélez, Ignacio
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/13170
Acceso en línea:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3681
http://hdl.handle.net/10784/13170
Palabra clave:
Network design problem
Public transportation
Variable neighborhood search
Multi-objective optimization
Diseño de redes de transporte
Transporte público
Búsqueda de vecindades variables
Optimización multiobjetivo
Rights
License
Copyright (c) 2017 Natalia Andrea Garzon, Eliana María González Neira, Ignacio Pérez Vélez
id REPOEAFIT2_c49de40df38001b375a6de61e018fa05
oai_identifier_str oai:repository.eafit.edu.co:10784/13170
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
dc.title.spa.fl_str_mv Metaheurística para la solución del Transit Network Design Problem multiobjetivo con demanda multiperiodo
title Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
spellingShingle Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
Network design problem
Public transportation
Variable neighborhood search
Multi-objective optimization
Diseño de redes de transporte
Transporte público
Búsqueda de vecindades variables
Optimización multiobjetivo
title_short Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
title_full Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
title_fullStr Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
title_full_unstemmed Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
title_sort Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod Demand
dc.creator.fl_str_mv Garzón, Natalia Andrea
González Neira, Eliana María
Pérez Vélez, Ignacio
dc.contributor.author.none.fl_str_mv Garzón, Natalia Andrea
González Neira, Eliana María
Pérez Vélez, Ignacio
dc.contributor.affiliation.spa.fl_str_mv Escuela Colombiana de Ingeniería Julio Garavito
Pontificia Universidad Javeriana
dc.subject.keyword.eng.fl_str_mv Network design problem
Public transportation
Variable neighborhood search
Multi-objective optimization
topic Network design problem
Public transportation
Variable neighborhood search
Multi-objective optimization
Diseño de redes de transporte
Transporte público
Búsqueda de vecindades variables
Optimización multiobjetivo
dc.subject.keyword.spa.fl_str_mv Diseño de redes de transporte
Transporte público
Búsqueda de vecindades variables
Optimización multiobjetivo
description In this paper we study the Tranport Network Design Problem (TNDP). It consists in finding the ideal combination of routes and frequencies that allow the decision maker to balance the interests of the users and the tran- sit operators, which are opposite. The TNDP uses as input a graph, with their transportation costs (in this case time), and the demands associated to each pair of nodes. Our proposed approach to solve the TNDP is based on a Variable Neighborhood Search (VNS) metaheuristic. VNS has been used to solve different kinds of combinatorial optimization problems and it consists in searching competitive solutions by iterative changes of the neighborhood. The VNS is tested first for the case study designed by Mandl, which consists in 15 nodes and 21 arcs, and a symmetric demand matrix. Posteriorly the VNS was tested for other 11 instances of (15, 30 and 45 nodes). In the first place, the model was run for that original case to compare it with other authors who worked this problem in the past. Then, we tested the VNS approach for a changing demand model in 3 moments of the day (Morning, afternoon and night) to prove the positive results obtained in the first exercise and give a greater scope to the problem solution.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-01-20
dc.date.available.none.fl_str_mv 2018-11-16T16:28:56Z
dc.date.accessioned.none.fl_str_mv 2018-11-16T16:28:56Z
dc.date.none.fl_str_mv 2017-01-20
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
article
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3681
http://hdl.handle.net/10784/13170
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.13.25.2
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.13.25.2
url http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3681
http://hdl.handle.net/10784/13170
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3681
dc.rights.eng.fl_str_mv Copyright (c) 2017 Natalia Andrea Garzon, Eliana María González Neira, Ignacio Pérez Vélez
Attribution 4.0 International (CC BY 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2017 Natalia Andrea Garzon, Eliana María González Neira, Ignacio Pérez Vélez
Attribution 4.0 International (CC BY 4.0)
http://creativecommons.org/licenses/by/4.0
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.eng.fl_str_mv Ingeniería y Ciencia; Vol 13 No 25 (2017); 29-69
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 13 No 25 (2017); 29-69
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/66bd48c8-c9d0-4a4a-a63a-52879493b506/download
https://repository.eafit.edu.co/bitstreams/7e6361bc-c942-4703-8fea-7e1f974501a2/download
https://repository.eafit.edu.co/bitstreams/fa0c368c-e8f3-4429-8ed6-eaad927ea801/download
bitstream.checksum.fl_str_mv 969066d47b7f60904dbef40105c916e5
527ed3be7cc465e858825ca2eac14134
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102402063007744
spelling 2017-01-202018-11-16T16:28:56Z2017-01-202018-11-16T16:28:56Z2256-43141794-9165http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3681http://hdl.handle.net/10784/1317010.17230/ingciencia.13.25.2In this paper we study the Tranport Network Design Problem (TNDP). It consists in finding the ideal combination of routes and frequencies that allow the decision maker to balance the interests of the users and the tran- sit operators, which are opposite. The TNDP uses as input a graph, with their transportation costs (in this case time), and the demands associated to each pair of nodes. Our proposed approach to solve the TNDP is based on a Variable Neighborhood Search (VNS) metaheuristic. VNS has been used to solve different kinds of combinatorial optimization problems and it consists in searching competitive solutions by iterative changes of the neighborhood. The VNS is tested first for the case study designed by Mandl, which consists in 15 nodes and 21 arcs, and a symmetric demand matrix. Posteriorly the VNS was tested for other 11 instances of (15, 30 and 45 nodes). In the first place, the model was run for that original case to compare it with other authors who worked this problem in the past. Then, we tested the VNS approach for a changing demand model in 3 moments of the day (Morning, afternoon and night) to prove the positive results obtained in the first exercise and give a greater scope to the problem solution.En este artículo se estudia el problema de Red de Transporte, usualmente conocido como TNDP (Transit Network Design Problem) multiobjetivo. Este consiste en encontrar la combinación ideal de rutas y frecuencias, que permita realizar un balance entre los intereses de los usuarios y los opera- dores, que se contraponen. Utiliza como datos de entrada un grafo con sus respectivos costos de transporte (en este caso tiempos) y demandas aso- ciadas a cada par de nodos. Como método de solución a este problema de optimización combinatoria multiobjetivo, se propone el uso de la metaheu- rística Búsqueda en Vecindades Variables (VNS), que resuelve problemas de optimización buscando soluciones competitivas mediante el cambio de vecindario iterativamente. El método propuesto fue probado inicialmente en el caso de estudio diseñado por Mandl, que consiste en 15 nodos y 21 arcos, y una matriz de demandas simétrica; y posteriormente para otras 11 instancias con tres tamaños de grafo diferentes (15, 30, 45 nodos). El mode- lo primero se corrió con el caso original para compararlo con autores que en oportunidades pasadas han trabajado el mismo problema. Posteriormente el VNS propuesto se probó con un modelo de demanda cambiante en 3 momentos del día (Mañana, tarde y noche) para corroborar los resultados positivos obtenidos en el primer ejercicio y darle un alcance mayor a la solución del problema.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3681Copyright (c) 2017 Natalia Andrea Garzon, Eliana María González Neira, Ignacio Pérez VélezAttribution 4.0 International (CC BY 4.0)http://creativecommons.org/licenses/by/4.0Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 13 No 25 (2017); 29-69Ingeniería y Ciencia; Vol 13 No 25 (2017); 29-69Metaheuristics to Solve the Multiobjective Transit Network Design Problem (TNDP) with Multiperiod DemandMetaheurística para la solución del Transit Network Design Problem multiobjetivo con demanda multiperiodoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlepublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Network design problemPublic transportationVariable neighborhood searchMulti-objective optimizationDiseño de redes de transporteTransporte públicoBúsqueda de vecindades variablesOptimización multiobjetivoGarzón, Natalia Andreab1c43538-7981-47ff-a4c9-d6b643e3646a-1González Neira, Eliana Maríacc4cd254-a5e1-46bb-bd30-71f7a36e5aae-1Pérez Vélez, Ignaciobd146bd7-865b-4416-9f33-c79039957ff0-1Escuela Colombiana de Ingeniería Julio GaravitoPontificia Universidad JaverianaIngeniería y Ciencia13252969ing.ciencORIGINAL2.pdf2.pdfTexto completo PDFapplication/pdf914796https://repository.eafit.edu.co/bitstreams/66bd48c8-c9d0-4a4a-a63a-52879493b506/download969066d47b7f60904dbef40105c916e5MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/7e6361bc-c942-4703-8fea-7e1f974501a2/download527ed3be7cc465e858825ca2eac14134MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/fa0c368c-e8f3-4429-8ed6-eaad927ea801/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/13170oai:repository.eafit.edu.co:10784/131702024-12-04 11:48:25.433http://creativecommons.org/licenses/by/4.0Copyright (c) 2017 Natalia Andrea Garzon, Eliana María González Neira, Ignacio Pérez Vélezopen.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co