Limits of quotients of bivariate real analytic functions
Necessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hense...
- Autores:
-
Molina, Sergio
Cadavid Moreno, Carlos Alberto
Vélez Caicedo, Juan Diego
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/5066
- Acceso en línea:
- http://hdl.handle.net/10784/5066
- Palabra clave:
- FUNCIONES ANALÍTICAS
CÁLCULO
ANÁLISIS VECTORIAL
CÁLCULO INTEGRAL
DERIVADAS (MATEMÁTICAS)
SUCESIONES (MATEMÁTICAS)
SERIES (MATEMÁTICAS)
Calculus
Analytic functions
Vector analysis
Calculus, integral
Sequences (mathematics)
Series
Límites
- Rights
- License
- Copyright © 2015 Elsevier B.V
id |
REPOEAFIT2_c2410abd3da8282d36e68bc91459efad |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/5066 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2015-03-06T19:20:03Z2013-032015-03-06T19:20:03ZC. Cadavid, S. Molina, J.D. Vélez, Limits of quotients of bivariate real analytic functions, Journal of Symbolic Computation, Volume 50, March 2013, Pages 197-207, ISSN 0747-7171, http://dx.doi.org/10.1016/j.jsc.2012.07.004. (http://www.sciencedirect.com/science/article/pii/S0747717112001204) Keywords: Limits; Real analytic functions; Puiseux series; Henselʼs Lemma0747-7171http://hdl.handle.net/10784/506610.1016/j.jsc.2012.07.004Necessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hensel’s Lemma which could be implemented in a computer algebra system in the case where f and g are polynomials with rational coefficients, or more generally, with coefficients in a real finite extension of the rationals -- A high level description of an algorithm for determining the existence of the limit as well as its computation is providedNecessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hensel’s Lemma which could be implemented in a computer algebra system in the case where f and g are polynomials with rational coefficients, or more generally, with coefficients in a real finite extension of the rationals -- A high level description of an algorithm for determining the existence of the limit as well as its computation is providedspaELSEVIERJournal of Symbolic Computation. Volume 50, March 2013, Pages 197–207http://dx.doi.org/10.1016/j.jsc.2012.07.004Copyright © 2015 Elsevier B.VAcceso restringidohttp://purl.org/coar/access_right/c_16ecLimits of quotients of bivariate real analytic functionsarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1FUNCIONES ANALÍTICASCÁLCULOANÁLISIS VECTORIALCÁLCULO INTEGRALDERIVADAS (MATEMÁTICAS)SUCESIONES (MATEMÁTICAS)SERIES (MATEMÁTICAS)CalculusAnalytic functionsVector analysisCalculus, integralSequences (mathematics)SeriesLímitesUniversidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y AplicacionesCarlos Cadavid M.(ccadavid@eafit.edu.co)Molina, Sergio95ccca28-8267-464a-90dc-7475a9f90b52-1Cadavid Moreno, Carlos Alberto764e393f-833e-4a28-a155-25a4799a8098-1Vélez Caicedo, Juan Diego84f3b6cb-3d98-4f68-a998-de4025bfc80b-1Análisis Funcional y AplicacionesJournal of Symbolic Computation50207197ORIGINALtexto_completo.pdftexto_completo.pdfapplication/pdf231193https://repository.eafit.edu.co/bitstreams/244d53eb-003a-4914-9a57-b2e30e83dddc/downloaddcd2690f3fbca18baf77fac633bc5893MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/e9290ce1-23ad-4b6f-abd5-71f4f1ddfdb3/download76025f86b095439b7ac65b367055d40cMD5310784/5066oai:repository.eafit.edu.co:10784/50662024-12-04 11:49:46.728restrictedhttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Limits of quotients of bivariate real analytic functions |
title |
Limits of quotients of bivariate real analytic functions |
spellingShingle |
Limits of quotients of bivariate real analytic functions FUNCIONES ANALÍTICAS CÁLCULO ANÁLISIS VECTORIAL CÁLCULO INTEGRAL DERIVADAS (MATEMÁTICAS) SUCESIONES (MATEMÁTICAS) SERIES (MATEMÁTICAS) Calculus Analytic functions Vector analysis Calculus, integral Sequences (mathematics) Series Límites |
title_short |
Limits of quotients of bivariate real analytic functions |
title_full |
Limits of quotients of bivariate real analytic functions |
title_fullStr |
Limits of quotients of bivariate real analytic functions |
title_full_unstemmed |
Limits of quotients of bivariate real analytic functions |
title_sort |
Limits of quotients of bivariate real analytic functions |
dc.creator.fl_str_mv |
Molina, Sergio Cadavid Moreno, Carlos Alberto Vélez Caicedo, Juan Diego |
dc.contributor.department.none.fl_str_mv |
Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones |
dc.contributor.eafitauthor.spa.fl_str_mv |
Carlos Cadavid M.(ccadavid@eafit.edu.co) |
dc.contributor.author.none.fl_str_mv |
Molina, Sergio Cadavid Moreno, Carlos Alberto Vélez Caicedo, Juan Diego |
dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Funcional y Aplicaciones |
dc.subject.lemb.spa.fl_str_mv |
FUNCIONES ANALÍTICAS CÁLCULO ANÁLISIS VECTORIAL CÁLCULO INTEGRAL DERIVADAS (MATEMÁTICAS) SUCESIONES (MATEMÁTICAS) SERIES (MATEMÁTICAS) |
topic |
FUNCIONES ANALÍTICAS CÁLCULO ANÁLISIS VECTORIAL CÁLCULO INTEGRAL DERIVADAS (MATEMÁTICAS) SUCESIONES (MATEMÁTICAS) SERIES (MATEMÁTICAS) Calculus Analytic functions Vector analysis Calculus, integral Sequences (mathematics) Series Límites |
dc.subject.keyword.eng.fl_str_mv |
Calculus Analytic functions Vector analysis Calculus, integral Sequences (mathematics) Series |
dc.subject.keyword.spa.fl_str_mv |
Límites |
description |
Necessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hensel’s Lemma which could be implemented in a computer algebra system in the case where f and g are polynomials with rational coefficients, or more generally, with coefficients in a real finite extension of the rationals -- A high level description of an algorithm for determining the existence of the limit as well as its computation is provided |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-03 |
dc.date.available.none.fl_str_mv |
2015-03-06T19:20:03Z |
dc.date.accessioned.none.fl_str_mv |
2015-03-06T19:20:03Z |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
C. Cadavid, S. Molina, J.D. Vélez, Limits of quotients of bivariate real analytic functions, Journal of Symbolic Computation, Volume 50, March 2013, Pages 197-207, ISSN 0747-7171, http://dx.doi.org/10.1016/j.jsc.2012.07.004. (http://www.sciencedirect.com/science/article/pii/S0747717112001204) Keywords: Limits; Real analytic functions; Puiseux series; Henselʼs Lemma |
dc.identifier.issn.spa.fl_str_mv |
0747-7171 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/5066 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jsc.2012.07.004 |
identifier_str_mv |
C. Cadavid, S. Molina, J.D. Vélez, Limits of quotients of bivariate real analytic functions, Journal of Symbolic Computation, Volume 50, March 2013, Pages 197-207, ISSN 0747-7171, http://dx.doi.org/10.1016/j.jsc.2012.07.004. (http://www.sciencedirect.com/science/article/pii/S0747717112001204) Keywords: Limits; Real analytic functions; Puiseux series; Henselʼs Lemma 0747-7171 10.1016/j.jsc.2012.07.004 |
url |
http://hdl.handle.net/10784/5066 |
dc.language.iso.eng.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Journal of Symbolic Computation. Volume 50, March 2013, Pages 197–207 |
dc.relation.uri.none.fl_str_mv |
http://dx.doi.org/10.1016/j.jsc.2012.07.004 |
dc.rights.spa.fl_str_mv |
Copyright © 2015 Elsevier B.V |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
Copyright © 2015 Elsevier B.V Acceso restringido http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
ELSEVIER |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/244d53eb-003a-4914-9a57-b2e30e83dddc/download https://repository.eafit.edu.co/bitstreams/e9290ce1-23ad-4b6f-abd5-71f4f1ddfdb3/download |
bitstream.checksum.fl_str_mv |
dcd2690f3fbca18baf77fac633bc5893 76025f86b095439b7ac65b367055d40c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102427420721152 |