Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method

A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diffusion-reaction equation in two-dimensional domains. The Local Hermitian Interpolation (LHI) method is employed for the spatial discretization and several strategies are implemented for the solution...

Full description

Autores:
Bustamante Chaverra, Carlos A
Power, Henry
Florez Escobar, Whady
Hill Betancourt, Alan F
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14409
Acceso en línea:
http://hdl.handle.net/10784/14409
Palabra clave:
Radial Basis Functions
Meshless Methods
Symmetric Method
Newton Raphson
Homotopy Analysis Method
Funciones De Base Radial
Métodos Sin Malla
Método Simétrico
Newton Raphson
Método De Análisis De Homotopía
Rights
License
Acceso abierto
id REPOEAFIT2_c0d3e5f713c5180acbabc9f17a306a48
oai_identifier_str oai:repository.eafit.edu.co:10784/14409
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
dc.title.spa.fl_str_mv Solución bidimensional sin malla de la ecuación no lineal de convección-difusión-reacción mediante el método de Interpolación Local Hermítica
title Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
spellingShingle Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
Radial Basis Functions
Meshless Methods
Symmetric Method
Newton Raphson
Homotopy Analysis Method
Funciones De Base Radial
Métodos Sin Malla
Método Simétrico
Newton Raphson
Método De Análisis De Homotopía
title_short Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
title_full Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
title_fullStr Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
title_full_unstemmed Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
title_sort Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
dc.creator.fl_str_mv Bustamante Chaverra, Carlos A
Power, Henry
Florez Escobar, Whady
Hill Betancourt, Alan F
dc.contributor.author.spa.fl_str_mv Bustamante Chaverra, Carlos A
Power, Henry
Florez Escobar, Whady
Hill Betancourt, Alan F
dc.contributor.affiliation.spa.fl_str_mv Universidad Pontificia Bolivariana
University of Nottingham
Universidad Pontificia Bolivariana
Universidad Pontificia Bolivariana
dc.subject.keyword.eng.fl_str_mv Radial Basis Functions
Meshless Methods
Symmetric Method
Newton Raphson
Homotopy Analysis Method
topic Radial Basis Functions
Meshless Methods
Symmetric Method
Newton Raphson
Homotopy Analysis Method
Funciones De Base Radial
Métodos Sin Malla
Método Simétrico
Newton Raphson
Método De Análisis De Homotopía
dc.subject.keyword.spa.fl_str_mv Funciones De Base Radial
Métodos Sin Malla
Método Simétrico
Newton Raphson
Método De Análisis De Homotopía
description A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diffusion-reaction equation in two-dimensional domains. The Local Hermitian Interpolation (LHI) method is employed for the spatial discretization and several strategies are implemented for the solution of the resulting non-linear equation system, among them the Picard iteration, the Newton Raphson method and a truncated version of the Homotopy Analysis Method (HAM). The LHI method is a local collocation strategy in which Radial Basis Functions (RBFs) are employed to build the interpolation function. Unlike the original Kansa’s Method, the LHI is applied locally and the boundary and governing equation differential operators are used to obtain the interpolation function, giving a symmetric and non-singular collocation matrix. Analytical and Numerical Jacobian matrices are tested for the Newton-Raphson method and the derivatives of the governing equation with respect to the homotopy parameter are obtained analytically. The numerical scheme is verified by comparing the obtained results to the one-dimensional Burgers’ and two-dimensional Richards’ analytical solutions. The same results are obtained for all the non-linear solvers tested, but better convergence rates are attained with the Newton Raphson method in a double iteration scheme.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-03-22
dc.date.available.none.fl_str_mv 2019-11-22T17:02:38Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T17:02:38Z
dc.date.none.fl_str_mv 2013-03-22
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14409
dc.identifier.doi.none.fl_str_mv 10.17230/ingciecia.9.17.2
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciecia.9.17.2
url http://hdl.handle.net/10784/14409
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1824
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1824
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 9, No 17 (2013)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/6b0b293a-5224-4a46-837e-27aa91261d2e/download
https://repository.eafit.edu.co/bitstreams/ae3228c2-f782-4f48-b9ba-935cdac1c01e/download
https://repository.eafit.edu.co/bitstreams/cbb4f91f-c3ba-447f-a55f-238f51061f5f/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
3654522ad07b300774e6e722b5da2e28
757377fee8b37a94a6815b836318e81e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110314117988352
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-03-222019-11-22T17:02:38Z2013-03-222019-11-22T17:02:38Z2256-43141794-9165http://hdl.handle.net/10784/1440910.17230/ingciecia.9.17.2A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diffusion-reaction equation in two-dimensional domains. The Local Hermitian Interpolation (LHI) method is employed for the spatial discretization and several strategies are implemented for the solution of the resulting non-linear equation system, among them the Picard iteration, the Newton Raphson method and a truncated version of the Homotopy Analysis Method (HAM). The LHI method is a local collocation strategy in which Radial Basis Functions (RBFs) are employed to build the interpolation function. Unlike the original Kansa’s Method, the LHI is applied locally and the boundary and governing equation differential operators are used to obtain the interpolation function, giving a symmetric and non-singular collocation matrix. Analytical and Numerical Jacobian matrices are tested for the Newton-Raphson method and the derivatives of the governing equation with respect to the homotopy parameter are obtained analytically. The numerical scheme is verified by comparing the obtained results to the one-dimensional Burgers’ and two-dimensional Richards’ analytical solutions. The same results are obtained for all the non-linear solvers tested, but better convergence rates are attained with the Newton Raphson method in a double iteration scheme.Se desarrolla un esquema numérico sin malla para resolver una versión genérica de la ecuación no lineal de convección-difusión-reacción en dominios bidimensionales. El método de Interpolación Hermitiana Local (LHI) se emplea para la discretización espacial y se implementan varias estrategias para la solución del sistema de ecuaciones no lineal resultante, entre ellas la iteración Picard, el método Newton Raphson y una versión truncada del Método de Análisis de Homotopía. (JAMÓN). El método LHI es una estrategia de colocación local en la que se utilizan funciones de base radial (RBF) para construir la función de interpolación. A diferencia del método original de Kansa, el LHI se aplica localmente y los operadores diferenciales de ecuación límite y gobernante se utilizan para obtener la función de interpolación, dando una matriz de colocación simétrica y no singular. Las matrices analíticas y numéricas jacobianas se prueban para el método de Newton-Raphson y las derivadas de la ecuación de gobierno con respecto al parámetro de homotopía se obtienen analíticamente. El esquema numérico se verifica comparando los resultados obtenidos con las soluciones analíticas unidimensionales de Burgers y Richards bidimensionales. Se obtienen los mismos resultados para todos los solucionadores no lineales probados, pero se obtienen mejores tasas de convergencia con el método Newton Raphson en un esquema de doble iteración.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1824http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1824Copyright (c) 2013 Carlos A Bustamante Chaverra, Henry Power, Whady F Florez Escobar, Alan F Hill BetancourtAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 9, No 17 (2013)Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation methodSolución bidimensional sin malla de la ecuación no lineal de convección-difusión-reacción mediante el método de Interpolación Local Hermíticaarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Radial Basis FunctionsMeshless MethodsSymmetric MethodNewton RaphsonHomotopy Analysis MethodFunciones De Base RadialMétodos Sin MallaMétodo SimétricoNewton RaphsonMétodo De Análisis De HomotopíaBustamante Chaverra, Carlos APower, HenryFlorez Escobar, WhadyHill Betancourt, Alan FUniversidad Pontificia BolivarianaUniversity of NottinghamUniversidad Pontificia BolivarianaUniversidad Pontificia BolivarianaIngeniería y Ciencia9172151ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/6b0b293a-5224-4a46-837e-27aa91261d2e/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL2.pdf2.pdfTexto completo PDFapplication/pdf781573https://repository.eafit.edu.co/bitstreams/ae3228c2-f782-4f48-b9ba-935cdac1c01e/download3654522ad07b300774e6e722b5da2e28MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/cbb4f91f-c3ba-447f-a55f-238f51061f5f/download757377fee8b37a94a6815b836318e81eMD5310784/14409oai:repository.eafit.edu.co:10784/144092020-03-02 21:07:06.723open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co