Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
The Reproducing Kernel Element Method (RKEM) is a relatively new technique developed to have two distinguished features: arbitrary high order smoothness and arbitrary interpolation order of the shape functions. This paper provides a tutorial on the derivation and computational implementation of RKEM...
- Autores:
-
J Juha, Mario
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14450
- Acceso en línea:
- http://hdl.handle.net/10784/14450
- Palabra clave:
- Elasticity
Convergence
Rkem
Continuity
Galerkin Methods
Elasticidad
Convergencia
Rkem
Continuidad
Métodos De Galerkin
- Rights
- License
- Copyright (c) 2012 Mario J Juha
id |
REPOEAFIT2_c0471d82cda9f20163921f8942e0a6db |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14450 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2012-12-012019-11-22T18:49:14Z2012-12-012019-11-22T18:49:14Z2256-43141794-9165http://hdl.handle.net/10784/1445010.17230/ingciencia.8.16.4The Reproducing Kernel Element Method (RKEM) is a relatively new technique developed to have two distinguished features: arbitrary high order smoothness and arbitrary interpolation order of the shape functions. This paper provides a tutorial on the derivation and computational implementation of RKEM for Galerkin discretizations of linear elastostatic problems for one and two dimensional space. A key characteristic of RKEM is that it do not require mid-side nodes in the elements to increase the interpolatory power of its shape functions, and contrary to meshless methods, the same mesh used to construct the shape functions is used for integration of the stiffness matrix. Furthermore, some issues about the quadrature used for integration arediscussed in this paper. Its hopes that this may attracts the attention of mathematicians.El método de reproducción del elemento del núcleo (RKEM) es una técnica relativamente nueva desarrollada para tener dos características distinguidas: suavidad arbitraria de alto orden y orden de interpolación arbitraria de las funciones de forma. Este artículo proporciona un tutorial sobre la derivación y la implementación computacional de RKEM para las discretizaciones de Galerkin de problemas elastostáticos lineales para el espacio de una y dos dimensiones. Una característica clave de RKEM es que no requiere nodos del lado medio en los elementos para aumentar el poder interpolador de sus funciones de forma, y al contrario de los métodos sin malla, la misma malla utilizada para construir las funciones de forma se utiliza para la integración de la rigidez. matriz. Además, algunos temas sobre la cuadratura utilizada para la integración se discuten en este documento. Espera que esto pueda atraer la atención de los matemáticos.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707Copyright (c) 2012 Mario J JuhaAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 8, No 16 (2012)Reproducing Kernel Element Method for Galerkin Solution of Elastostatic ProblemsMétodo del elemento reproductor del núcleo para soluciones de problemas elasto-estáticos.articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1ElasticityConvergenceRkemContinuityGalerkin MethodsElasticidadConvergenciaRkemContinuidadMétodos De GalerkinJ Juha, MarioUniversidad Autónoma del CaribeIngeniería y Ciencia8167196ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/a65e428c-205f-4df5-8016-95d221ea1241/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL4.pdf4.pdfTexto completo PDFapplication/pdf1835093https://repository.eafit.edu.co/bitstreams/8b814731-d49b-4909-8ee4-6350ad4afefc/download6bd885376fb3c4b4de0e48bf671d5094MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/25e18018-8936-4587-bd92-a55dd03a857f/download7805df077249a391c2af5fa12f6b29c8MD5310784/14450oai:repository.eafit.edu.co:10784/144502020-03-02 21:51:06.558open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems |
dc.title.spa.fl_str_mv |
Método del elemento reproductor del núcleo para soluciones de problemas elasto-estáticos. |
title |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems |
spellingShingle |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems Elasticity Convergence Rkem Continuity Galerkin Methods Elasticidad Convergencia Rkem Continuidad Métodos De Galerkin |
title_short |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems |
title_full |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems |
title_fullStr |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems |
title_full_unstemmed |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems |
title_sort |
Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems |
dc.creator.fl_str_mv |
J Juha, Mario |
dc.contributor.author.spa.fl_str_mv |
J Juha, Mario |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Autónoma del Caribe |
dc.subject.keyword.eng.fl_str_mv |
Elasticity Convergence Rkem Continuity Galerkin Methods |
topic |
Elasticity Convergence Rkem Continuity Galerkin Methods Elasticidad Convergencia Rkem Continuidad Métodos De Galerkin |
dc.subject.keyword.spa.fl_str_mv |
Elasticidad Convergencia Rkem Continuidad Métodos De Galerkin |
description |
The Reproducing Kernel Element Method (RKEM) is a relatively new technique developed to have two distinguished features: arbitrary high order smoothness and arbitrary interpolation order of the shape functions. This paper provides a tutorial on the derivation and computational implementation of RKEM for Galerkin discretizations of linear elastostatic problems for one and two dimensional space. A key characteristic of RKEM is that it do not require mid-side nodes in the elements to increase the interpolatory power of its shape functions, and contrary to meshless methods, the same mesh used to construct the shape functions is used for integration of the stiffness matrix. Furthermore, some issues about the quadrature used for integration arediscussed in this paper. Its hopes that this may attracts the attention of mathematicians. |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012-12-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T18:49:14Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T18:49:14Z |
dc.date.none.fl_str_mv |
2012-12-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14450 |
dc.identifier.doi.none.fl_str_mv |
10.17230/ingciencia.8.16.4 |
identifier_str_mv |
2256-4314 1794-9165 10.17230/ingciencia.8.16.4 |
url |
http://hdl.handle.net/10784/14450 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2012 Mario J Juha |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2012 Mario J Juha Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 8, No 16 (2012) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/a65e428c-205f-4df5-8016-95d221ea1241/download https://repository.eafit.edu.co/bitstreams/8b814731-d49b-4909-8ee4-6350ad4afefc/download https://repository.eafit.edu.co/bitstreams/25e18018-8936-4587-bd92-a55dd03a857f/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 6bd885376fb3c4b4de0e48bf671d5094 7805df077249a391c2af5fa12f6b29c8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110154881236992 |