Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems

The Reproducing Kernel Element Method (RKEM) is a relatively new technique developed to have two distinguished features: arbitrary high order smoothness and arbitrary interpolation order of the shape functions. This paper provides a tutorial on the derivation and computational implementation of RKEM...

Full description

Autores:
J Juha, Mario
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14450
Acceso en línea:
http://hdl.handle.net/10784/14450
Palabra clave:
Elasticity
Convergence
Rkem
Continuity
Galerkin Methods
Elasticidad
Convergencia
Rkem
Continuidad
Métodos De Galerkin
Rights
License
Copyright (c) 2012 Mario J Juha
id REPOEAFIT2_c0471d82cda9f20163921f8942e0a6db
oai_identifier_str oai:repository.eafit.edu.co:10784/14450
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2012-12-012019-11-22T18:49:14Z2012-12-012019-11-22T18:49:14Z2256-43141794-9165http://hdl.handle.net/10784/1445010.17230/ingciencia.8.16.4The Reproducing Kernel Element Method (RKEM) is a relatively new technique developed to have two distinguished features: arbitrary high order smoothness and arbitrary interpolation order of the shape functions. This paper provides a tutorial on the derivation and computational implementation of RKEM for Galerkin discretizations of linear elastostatic problems for one and two dimensional space. A key characteristic of RKEM is that it do not require mid-side nodes in the elements to increase the interpolatory power of its shape functions, and contrary to meshless methods, the same mesh used to construct the shape functions is used for integration of the stiffness matrix. Furthermore, some issues about the quadrature used for integration arediscussed in this paper. Its hopes that this may attracts the attention of mathematicians.El método de reproducción del elemento del núcleo (RKEM) es una técnica relativamente nueva desarrollada para tener dos características distinguidas: suavidad arbitraria de alto orden y orden de interpolación arbitraria de las funciones de forma. Este artículo proporciona un tutorial sobre la derivación y la implementación computacional de RKEM para las discretizaciones de Galerkin de problemas elastostáticos lineales para el espacio de una y dos dimensiones. Una característica clave de RKEM es que no requiere nodos del lado medio en los elementos para aumentar el poder interpolador de sus funciones de forma, y al contrario de los métodos sin malla, la misma malla utilizada para construir las funciones de forma se utiliza para la integración de la rigidez. matriz. Además, algunos temas sobre la cuadratura utilizada para la integración se discuten en este documento. Espera que esto pueda atraer la atención de los matemáticos.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707Copyright (c) 2012 Mario J JuhaAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 8, No 16 (2012)Reproducing Kernel Element Method for Galerkin Solution of Elastostatic ProblemsMétodo del elemento reproductor del núcleo para soluciones de problemas elasto-estáticos.articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1ElasticityConvergenceRkemContinuityGalerkin MethodsElasticidadConvergenciaRkemContinuidadMétodos De GalerkinJ Juha, MarioUniversidad Autónoma del CaribeIngeniería y Ciencia8167196ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/a65e428c-205f-4df5-8016-95d221ea1241/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL4.pdf4.pdfTexto completo PDFapplication/pdf1835093https://repository.eafit.edu.co/bitstreams/8b814731-d49b-4909-8ee4-6350ad4afefc/download6bd885376fb3c4b4de0e48bf671d5094MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/25e18018-8936-4587-bd92-a55dd03a857f/download7805df077249a391c2af5fa12f6b29c8MD5310784/14450oai:repository.eafit.edu.co:10784/144502020-03-02 21:51:06.558open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
dc.title.spa.fl_str_mv Método del elemento reproductor del núcleo para soluciones de problemas elasto-estáticos.
title Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
spellingShingle Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
Elasticity
Convergence
Rkem
Continuity
Galerkin Methods
Elasticidad
Convergencia
Rkem
Continuidad
Métodos De Galerkin
title_short Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
title_full Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
title_fullStr Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
title_full_unstemmed Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
title_sort Reproducing Kernel Element Method for Galerkin Solution of Elastostatic Problems
dc.creator.fl_str_mv J Juha, Mario
dc.contributor.author.spa.fl_str_mv J Juha, Mario
dc.contributor.affiliation.spa.fl_str_mv Universidad Autónoma del Caribe
dc.subject.keyword.eng.fl_str_mv Elasticity
Convergence
Rkem
Continuity
Galerkin Methods
topic Elasticity
Convergence
Rkem
Continuity
Galerkin Methods
Elasticidad
Convergencia
Rkem
Continuidad
Métodos De Galerkin
dc.subject.keyword.spa.fl_str_mv Elasticidad
Convergencia
Rkem
Continuidad
Métodos De Galerkin
description The Reproducing Kernel Element Method (RKEM) is a relatively new technique developed to have two distinguished features: arbitrary high order smoothness and arbitrary interpolation order of the shape functions. This paper provides a tutorial on the derivation and computational implementation of RKEM for Galerkin discretizations of linear elastostatic problems for one and two dimensional space. A key characteristic of RKEM is that it do not require mid-side nodes in the elements to increase the interpolatory power of its shape functions, and contrary to meshless methods, the same mesh used to construct the shape functions is used for integration of the stiffness matrix. Furthermore, some issues about the quadrature used for integration arediscussed in this paper. Its hopes that this may attracts the attention of mathematicians.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-12-01
dc.date.available.none.fl_str_mv 2019-11-22T18:49:14Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T18:49:14Z
dc.date.none.fl_str_mv 2012-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14450
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.8.16.4
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.8.16.4
url http://hdl.handle.net/10784/14450
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1707
dc.rights.eng.fl_str_mv Copyright (c) 2012 Mario J Juha
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2012 Mario J Juha
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 8, No 16 (2012)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/a65e428c-205f-4df5-8016-95d221ea1241/download
https://repository.eafit.edu.co/bitstreams/8b814731-d49b-4909-8ee4-6350ad4afefc/download
https://repository.eafit.edu.co/bitstreams/25e18018-8936-4587-bd92-a55dd03a857f/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
6bd885376fb3c4b4de0e48bf671d5094
7805df077249a391c2af5fa12f6b29c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110154881236992