Motion equation of a finite dynamic elastic plane lineal element plane lineal element
A linear finite element with constant cross section can take any orientation in the plane and its ends or nodes bind it to the rest of the elements. The kinetic (T) and potential (V) energy of a dynamic elastic element are the basis for the implementation of the Hamilton principle for the definition...
- Autores:
-
G Hossne, Américo
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14482
- Acceso en línea:
- http://hdl.handle.net/10784/14482
- Palabra clave:
- Hamilton Principle
Dynamic Elastic Flat Linear Finite Element
Four-Bar Elastic Mechanisms
Lagrangian
Mass Matrix
Rigidity Matrix And Gyroscopic Matrix
Principio De Hamilton
Elemento Finito Lineal Plano Elástico Dinámico
Mecanismos Elásticos De Cuatro Barras
Lagrangiana
Matriz De Masas
Matriz De Rigideces Y Matriz Giroscópica
- Rights
- License
- Copyright (c) 2010 Américo G Hossne
id |
REPOEAFIT2_bd5697c464bb6b11029532fcafb6f895 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14482 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element |
dc.title.spa.fl_str_mv |
Ecuación del movimiento de un elemento finito lineal plano elástico dinámico con ocho grados de libertad |
title |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element |
spellingShingle |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element Hamilton Principle Dynamic Elastic Flat Linear Finite Element Four-Bar Elastic Mechanisms Lagrangian Mass Matrix Rigidity Matrix And Gyroscopic Matrix Principio De Hamilton Elemento Finito Lineal Plano Elástico Dinámico Mecanismos Elásticos De Cuatro Barras Lagrangiana Matriz De Masas Matriz De Rigideces Y Matriz Giroscópica |
title_short |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element |
title_full |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element |
title_fullStr |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element |
title_full_unstemmed |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element |
title_sort |
Motion equation of a finite dynamic elastic plane lineal element plane lineal element |
dc.creator.fl_str_mv |
G Hossne, Américo |
dc.contributor.author.spa.fl_str_mv |
G Hossne, Américo |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad de Oriente, Núcleo de Monagas. |
dc.subject.keyword.eng.fl_str_mv |
Hamilton Principle Dynamic Elastic Flat Linear Finite Element Four-Bar Elastic Mechanisms Lagrangian Mass Matrix Rigidity Matrix And Gyroscopic Matrix |
topic |
Hamilton Principle Dynamic Elastic Flat Linear Finite Element Four-Bar Elastic Mechanisms Lagrangian Mass Matrix Rigidity Matrix And Gyroscopic Matrix Principio De Hamilton Elemento Finito Lineal Plano Elástico Dinámico Mecanismos Elásticos De Cuatro Barras Lagrangiana Matriz De Masas Matriz De Rigideces Y Matriz Giroscópica |
dc.subject.keyword.spa.fl_str_mv |
Principio De Hamilton Elemento Finito Lineal Plano Elástico Dinámico Mecanismos Elásticos De Cuatro Barras Lagrangiana Matriz De Masas Matriz De Rigideces Y Matriz Giroscópica |
description |
A linear finite element with constant cross section can take any orientation in the plane and its ends or nodes bind it to the rest of the elements. The kinetic (T) and potential (V) energy of a dynamic elastic element are the basis for the implementation of the Hamilton principle for the definition of a finite element. The definition of kinetic and potential energy is the first step for the preliminary variational formulation to the finite element enunciation that is used to solve, say, the problems of mechanisms that move in the plane using the Hamilton Equation. The general objective was to define the equation of motion of a dynamic elastic flat linear finite element using the Hamilton equation, from the Lagrangian (T –V) obtained with the use of a fifth and first degree polynomial, with eight degrees of freedom, four in each node, which represented the deformations: axial (u (x)), transverse (w (x)), slope ((dw (x) / dx)) and curvature ((d ^ 2w ( x) / dx ^ 2)). The deformation due to the transverse, insignificant shear compared to the flexional and axial deformation, the rotational inertia and the frictional forces in the joints, were rejected in order to produce a friendly element. The specific objectives were to produce: (a) the translation mass matrix [MD], (b) the gyroscopic translation matrix [AD], (c) the total translation rigidity matrix [KD], and (d) the deformation vector (S). As a result, the equation of motion of a dynamic elastic flat linear finite element was forged |
publishDate |
2010 |
dc.date.issued.none.fl_str_mv |
2010-12-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T19:01:24Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T19:01:24Z |
dc.date.none.fl_str_mv |
2010-12-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14482 |
identifier_str_mv |
2256-4314 1794-9165 |
url |
http://hdl.handle.net/10784/14482 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2010 Américo G Hossne |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2010 Américo G Hossne Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 6, No 12 (2010) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/817c890a-1416-4d10-8f86-4574cbce89be/download https://repository.eafit.edu.co/bitstreams/f38903df-ac70-424b-86d9-0aa43b0cf8e2/download https://repository.eafit.edu.co/bitstreams/24826eb7-3d7e-4da1-9e02-4ac57b326e4b/download |
bitstream.checksum.fl_str_mv |
38ca4df367e336466da98ace82bd18b6 f1626f63f2bb99e9d6f9f51af264b6d1 da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110532544757760 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2010-12-012019-11-22T19:01:24Z2010-12-012019-11-22T19:01:24Z2256-43141794-9165http://hdl.handle.net/10784/14482A linear finite element with constant cross section can take any orientation in the plane and its ends or nodes bind it to the rest of the elements. The kinetic (T) and potential (V) energy of a dynamic elastic element are the basis for the implementation of the Hamilton principle for the definition of a finite element. The definition of kinetic and potential energy is the first step for the preliminary variational formulation to the finite element enunciation that is used to solve, say, the problems of mechanisms that move in the plane using the Hamilton Equation. The general objective was to define the equation of motion of a dynamic elastic flat linear finite element using the Hamilton equation, from the Lagrangian (T –V) obtained with the use of a fifth and first degree polynomial, with eight degrees of freedom, four in each node, which represented the deformations: axial (u (x)), transverse (w (x)), slope ((dw (x) / dx)) and curvature ((d ^ 2w ( x) / dx ^ 2)). The deformation due to the transverse, insignificant shear compared to the flexional and axial deformation, the rotational inertia and the frictional forces in the joints, were rejected in order to produce a friendly element. The specific objectives were to produce: (a) the translation mass matrix [MD], (b) the gyroscopic translation matrix [AD], (c) the total translation rigidity matrix [KD], and (d) the deformation vector (S). As a result, the equation of motion of a dynamic elastic flat linear finite element was forgedUn elemento finito lineal con sección transversal constante puede adoptar cualquier orientación en el plano y sus extremos o nodos lo ligan al resto de los elementos. La energía cinética (T ) y potencial (V ) de un elemento elástico dinámico son el basamento en la implementación del principio de Hamilton para la definición de un elemento finito. La definición de la energía cinética y potencial es el primer paso para la formulación variacional preliminar a la enunciación por elementos finitos que se utiliza para resolver, dígase, los problemas de mecanismos que se mueven en el plano utilizando la Ecuación de Hamilton. El objetivo general consistió en definir la Ecuación del movimiento de un elemento finito lineal plano elástico dinámico utilizando la Ecuación de Hamilton, a partir de la lagrangiana (T –V ) obtenida con el uso de un polinomio de quinto y uno de primer grados, con ocho grados de libertad, cuatro en cada nodo, que representaron las deformaciones: axial (u(x)), transversal (w(x)), pendiente ((dw(x)/dx)) y curvatura ((d^2w(x)/dx^2)). La deformación debido al cizalleo transversal, insignificante comparado con la deformación flexional y la axial, la inercia rotatoria y las fuerzas friccionales en las uniones, fueron desestimadas con el fin de producir un elemento amigo. Los objetivos específicos fueron producir: (a) la matriz de masa de traslación [MD], (b) la matriz giroscópica de traslación [AD], (c) la matriz de rigidez total de traslación [KD], y (d) el vector de deformación (S). Como resultado se forjó la Ecuación del movimiento de un elemento finito lineal plano elástico dinámicoapplication/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333Copyright (c) 2010 Américo G HossneAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 6, No 12 (2010)Motion equation of a finite dynamic elastic plane lineal element plane lineal elementEcuación del movimiento de un elemento finito lineal plano elástico dinámico con ocho grados de libertadarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hamilton PrincipleDynamic Elastic Flat Linear Finite ElementFour-Bar Elastic MechanismsLagrangianMass MatrixRigidity Matrix And Gyroscopic MatrixPrincipio De HamiltonElemento Finito Lineal Plano Elástico DinámicoMecanismos Elásticos De Cuatro BarrasLagrangianaMatriz De MasasMatriz De Rigideces Y Matriz GiroscópicaG Hossne, AméricoUniversidad de Oriente, Núcleo de Monagas.Ingeniería y Ciencia6126480ing.cienc.ORIGINAL4.pdf4.pdfTexto completo PDFapplication/pdf232304https://repository.eafit.edu.co/bitstreams/817c890a-1416-4d10-8f86-4574cbce89be/download38ca4df367e336466da98ace82bd18b6MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/f38903df-ac70-424b-86d9-0aa43b0cf8e2/downloadf1626f63f2bb99e9d6f9f51af264b6d1MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/24826eb7-3d7e-4da1-9e02-4ac57b326e4b/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/14482oai:repository.eafit.edu.co:10784/144822020-03-02 22:21:12.76open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |