Motion equation of a finite dynamic elastic plane lineal element plane lineal element

A linear finite element with constant cross section can take any orientation in the plane and its ends or nodes bind it to the rest of the elements. The kinetic (T) and potential (V) energy of a dynamic elastic element are the basis for the implementation of the Hamilton principle for the definition...

Full description

Autores:
G Hossne, Américo
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/14482
Acceso en línea:
http://hdl.handle.net/10784/14482
Palabra clave:
Hamilton Principle
Dynamic Elastic Flat Linear Finite Element
Four-Bar Elastic Mechanisms
Lagrangian
Mass Matrix
Rigidity Matrix And Gyroscopic Matrix
Principio De Hamilton
Elemento Finito Lineal Plano Elástico Dinámico
Mecanismos Elásticos De Cuatro Barras
Lagrangiana
Matriz De Masas
Matriz De Rigideces Y Matriz Giroscópica
Rights
License
Copyright (c) 2010 Américo G Hossne
id REPOEAFIT2_bd5697c464bb6b11029532fcafb6f895
oai_identifier_str oai:repository.eafit.edu.co:10784/14482
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Motion equation of a finite dynamic elastic plane lineal element plane lineal element
dc.title.spa.fl_str_mv Ecuación del movimiento de un elemento finito lineal plano elástico dinámico con ocho grados de libertad
title Motion equation of a finite dynamic elastic plane lineal element plane lineal element
spellingShingle Motion equation of a finite dynamic elastic plane lineal element plane lineal element
Hamilton Principle
Dynamic Elastic Flat Linear Finite Element
Four-Bar Elastic Mechanisms
Lagrangian
Mass Matrix
Rigidity Matrix And Gyroscopic Matrix
Principio De Hamilton
Elemento Finito Lineal Plano Elástico Dinámico
Mecanismos Elásticos De Cuatro Barras
Lagrangiana
Matriz De Masas
Matriz De Rigideces Y Matriz Giroscópica
title_short Motion equation of a finite dynamic elastic plane lineal element plane lineal element
title_full Motion equation of a finite dynamic elastic plane lineal element plane lineal element
title_fullStr Motion equation of a finite dynamic elastic plane lineal element plane lineal element
title_full_unstemmed Motion equation of a finite dynamic elastic plane lineal element plane lineal element
title_sort Motion equation of a finite dynamic elastic plane lineal element plane lineal element
dc.creator.fl_str_mv G Hossne, Américo
dc.contributor.author.spa.fl_str_mv G Hossne, Américo
dc.contributor.affiliation.spa.fl_str_mv Universidad de Oriente, Núcleo de Monagas.
dc.subject.keyword.eng.fl_str_mv Hamilton Principle
Dynamic Elastic Flat Linear Finite Element
Four-Bar Elastic Mechanisms
Lagrangian
Mass Matrix
Rigidity Matrix And Gyroscopic Matrix
topic Hamilton Principle
Dynamic Elastic Flat Linear Finite Element
Four-Bar Elastic Mechanisms
Lagrangian
Mass Matrix
Rigidity Matrix And Gyroscopic Matrix
Principio De Hamilton
Elemento Finito Lineal Plano Elástico Dinámico
Mecanismos Elásticos De Cuatro Barras
Lagrangiana
Matriz De Masas
Matriz De Rigideces Y Matriz Giroscópica
dc.subject.keyword.spa.fl_str_mv Principio De Hamilton
Elemento Finito Lineal Plano Elástico Dinámico
Mecanismos Elásticos De Cuatro Barras
Lagrangiana
Matriz De Masas
Matriz De Rigideces Y Matriz Giroscópica
description A linear finite element with constant cross section can take any orientation in the plane and its ends or nodes bind it to the rest of the elements. The kinetic (T) and potential (V) energy of a dynamic elastic element are the basis for the implementation of the Hamilton principle for the definition of a finite element. The definition of kinetic and potential energy is the first step for the preliminary variational formulation to the finite element enunciation that is used to solve, say, the problems of mechanisms that move in the plane using the Hamilton Equation. The general objective was to define the equation of motion of a dynamic elastic flat linear finite element using the Hamilton equation, from the Lagrangian (T –V) obtained with the use of a fifth and first degree polynomial, with eight degrees of freedom, four in each node, which represented the deformations: axial (u (x)), transverse (w (x)), slope ((dw (x) / dx)) and curvature ((d ^ 2w ( x) / dx ^ 2)). The deformation due to the transverse, insignificant shear compared to the flexional and axial deformation, the rotational inertia and the frictional forces in the joints, were rejected in order to produce a friendly element. The specific objectives were to produce: (a) the translation mass matrix [MD], (b) the gyroscopic translation matrix [AD], (c) the total translation rigidity matrix [KD], and (d) the deformation vector (S). As a result, the equation of motion of a dynamic elastic flat linear finite element was forged
publishDate 2010
dc.date.issued.none.fl_str_mv 2010-12-01
dc.date.available.none.fl_str_mv 2019-11-22T19:01:24Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:01:24Z
dc.date.none.fl_str_mv 2010-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14482
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14482
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333
dc.rights.eng.fl_str_mv Copyright (c) 2010 Américo G Hossne
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2010 Américo G Hossne
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 6, No 12 (2010)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/817c890a-1416-4d10-8f86-4574cbce89be/download
https://repository.eafit.edu.co/bitstreams/f38903df-ac70-424b-86d9-0aa43b0cf8e2/download
https://repository.eafit.edu.co/bitstreams/24826eb7-3d7e-4da1-9e02-4ac57b326e4b/download
bitstream.checksum.fl_str_mv 38ca4df367e336466da98ace82bd18b6
f1626f63f2bb99e9d6f9f51af264b6d1
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110532544757760
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2010-12-012019-11-22T19:01:24Z2010-12-012019-11-22T19:01:24Z2256-43141794-9165http://hdl.handle.net/10784/14482A linear finite element with constant cross section can take any orientation in the plane and its ends or nodes bind it to the rest of the elements. The kinetic (T) and potential (V) energy of a dynamic elastic element are the basis for the implementation of the Hamilton principle for the definition of a finite element. The definition of kinetic and potential energy is the first step for the preliminary variational formulation to the finite element enunciation that is used to solve, say, the problems of mechanisms that move in the plane using the Hamilton Equation. The general objective was to define the equation of motion of a dynamic elastic flat linear finite element using the Hamilton equation, from the Lagrangian (T –V) obtained with the use of a fifth and first degree polynomial, with eight degrees of freedom, four in each node, which represented the deformations: axial (u (x)), transverse (w (x)), slope ((dw (x) / dx)) and curvature ((d ^ 2w ( x) / dx ^ 2)). The deformation due to the transverse, insignificant shear compared to the flexional and axial deformation, the rotational inertia and the frictional forces in the joints, were rejected in order to produce a friendly element. The specific objectives were to produce: (a) the translation mass matrix [MD], (b) the gyroscopic translation matrix [AD], (c) the total translation rigidity matrix [KD], and (d) the deformation vector (S). As a result, the equation of motion of a dynamic elastic flat linear finite element was forgedUn elemento finito lineal con sección transversal constante puede adoptar cualquier orientación en el plano y sus extremos o nodos lo ligan al resto de los elementos. La energía cinética (T ) y potencial (V ) de un elemento elástico dinámico son el basamento en la implementación del principio de Hamilton para la definición de un elemento finito. La definición de la energía cinética y potencial es el primer paso para la formulación variacional preliminar a la enunciación por elementos finitos que se utiliza para resolver, dígase, los problemas de mecanismos que se mueven en el plano utilizando la Ecuación de Hamilton. El objetivo general consistió en definir la Ecuación del movimiento de un elemento finito lineal plano elástico dinámico utilizando la Ecuación de Hamilton, a partir de la lagrangiana (T –V ) obtenida con el uso de un polinomio de quinto y uno de primer grados, con ocho grados de libertad, cuatro en cada nodo, que representaron las deformaciones: axial (u(x)), transversal (w(x)), pendiente ((dw(x)/dx)) y curvatura ((d^2w(x)/dx^2)). La deformación debido al cizalleo transversal, insignificante comparado con la deformación flexional y la axial, la inercia rotatoria y las fuerzas friccionales en las uniones, fueron desestimadas con el fin de producir un elemento amigo. Los objetivos específicos fueron producir: (a) la matriz de masa de traslación [MD], (b) la matriz giroscópica de traslación [AD], (c) la matriz de rigidez total de traslación [KD], y (d) el vector de deformación (S). Como resultado se forjó la Ecuación del movimiento de un elemento finito lineal plano elástico dinámicoapplication/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/333Copyright (c) 2010 Américo G HossneAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 6, No 12 (2010)Motion equation of a finite dynamic elastic plane lineal element plane lineal elementEcuación del movimiento de un elemento finito lineal plano elástico dinámico con ocho grados de libertadarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hamilton PrincipleDynamic Elastic Flat Linear Finite ElementFour-Bar Elastic MechanismsLagrangianMass MatrixRigidity Matrix And Gyroscopic MatrixPrincipio De HamiltonElemento Finito Lineal Plano Elástico DinámicoMecanismos Elásticos De Cuatro BarrasLagrangianaMatriz De MasasMatriz De Rigideces Y Matriz GiroscópicaG Hossne, AméricoUniversidad de Oriente, Núcleo de Monagas.Ingeniería y Ciencia6126480ing.cienc.ORIGINAL4.pdf4.pdfTexto completo PDFapplication/pdf232304https://repository.eafit.edu.co/bitstreams/817c890a-1416-4d10-8f86-4574cbce89be/download38ca4df367e336466da98ace82bd18b6MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/f38903df-ac70-424b-86d9-0aa43b0cf8e2/downloadf1626f63f2bb99e9d6f9f51af264b6d1MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/24826eb7-3d7e-4da1-9e02-4ac57b326e4b/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/14482oai:repository.eafit.edu.co:10784/144822020-03-02 22:21:12.76open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co