Determining the limits of geometrical tortuosity from seepage flow calculations in porous media

Recent investigations have found a distinct correlation of effective properties of porous media to sigmoidal functions, where one axis is the Reynolds number Re and the other is the effective property dependent of Re, Θ = S (Re) -- One of these properties is tortuosity -- At very low Re (seepage flo...

Full description

Autores:
Uribe, David
Osorno, María
Sivanesapillai, Rakulan
Steeb, Holger
Ruíz, Óscar
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9666
Acceso en línea:
http://hdl.handle.net/10784/9666
Palabra clave:
MATERIALES POROSOS
DISTRIBUCIÓN DE GAUSS
ASÍNTOTAS
NÚMERO DE REYNOLDS
Porous materials
Gauss distribution
Asymptotes
Reynolds number
Porous materials
Gauss distribution
Asymptotes
Reynolds number
Función sigmoide
Factor de Tortuosidad
Algoritmo de esqueletización
Rights
License
Acceso cerrado
id REPOEAFIT2_bc7b6d7778fed378c26f8d0f49decd01
oai_identifier_str oai:repository.eafit.edu.co:10784/9666
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
title Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
spellingShingle Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
MATERIALES POROSOS
DISTRIBUCIÓN DE GAUSS
ASÍNTOTAS
NÚMERO DE REYNOLDS
Porous materials
Gauss distribution
Asymptotes
Reynolds number
Porous materials
Gauss distribution
Asymptotes
Reynolds number
Función sigmoide
Factor de Tortuosidad
Algoritmo de esqueletización
title_short Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
title_full Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
title_fullStr Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
title_full_unstemmed Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
title_sort Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
dc.creator.fl_str_mv Uribe, David
Osorno, María
Sivanesapillai, Rakulan
Steeb, Holger
Ruíz, Óscar
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Uribe, David
Osorno, María
Sivanesapillai, Rakulan
Steeb, Holger
Ruíz, Óscar
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv MATERIALES POROSOS
DISTRIBUCIÓN DE GAUSS
ASÍNTOTAS
NÚMERO DE REYNOLDS
topic MATERIALES POROSOS
DISTRIBUCIÓN DE GAUSS
ASÍNTOTAS
NÚMERO DE REYNOLDS
Porous materials
Gauss distribution
Asymptotes
Reynolds number
Porous materials
Gauss distribution
Asymptotes
Reynolds number
Función sigmoide
Factor de Tortuosidad
Algoritmo de esqueletización
dc.subject.keyword.spa.fl_str_mv Porous materials
Gauss distribution
Asymptotes
Reynolds number
dc.subject.keyword.eng.fl_str_mv Porous materials
Gauss distribution
Asymptotes
Reynolds number
dc.subject.keyword..keywor.fl_str_mv Función sigmoide
Factor de Tortuosidad
Algoritmo de esqueletización
description Recent investigations have found a distinct correlation of effective properties of porous media to sigmoidal functions, where one axis is the Reynolds number Re and the other is the effective property dependent of Re, Θ = S (Re) -- One of these properties is tortuosity -- At very low Re (seepage flow), there is a characteristic value of tortuosity, and it is the upper horizontal asymptote of the sigmoidal function -- With higher values of Re (transient flow) the tortuosity value decreases, until a lower asymptote is reached (turbulent flow) -- Estimations of this parameter have been limited to the low Reynolds regime in the study of porous media -- The current state of the art presents different numerical measurements of tortuosity, such as skeletization, centroid binding, and arc length of streamlines -- These are solutions for the low Re regime. So far, for high Re, only the arc length of stream lines has been used to calculate tortuosity -- The present approach involves the simulation of fluid flow in large domains and high Re, which requires numerous resources, and often presents convergence problems -- In response to this, we propose a geometrical method to estimate the limit of tortuosity of porous media at Re → ∞, from the streamlines calculated at low Re limit -- We test our method by calculating the tortuosity limits in a fibrous porous media, and comparing the estimated values with numerical benchmark results -- Ongoing work includes the geometric estimation of different intrinsic properties of porous media
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.available.none.fl_str_mv 2016-11-18T21:53:09Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T21:53:09Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1617-7061
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9666
dc.identifier.doi.none.fl_str_mv 10.1002/pamm.201410214
identifier_str_mv 1617-7061
10.1002/pamm.201410214
url http://hdl.handle.net/10784/9666
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv PAMM, Volume 14, Issue 1, pp 453-454
dc.relation.uri.none.fl_str_mv http://onlinelibrary.wiley.com/doi/10.1002/pamm.201410214/abstract
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.local.spa.fl_str_mv Acceso cerrado
rights_invalid_str_mv Acceso cerrado
http://purl.org/coar/access_right/c_14cb
dc.format.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv WILEY-VCH Verlag
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/958d967d-619e-41c6-a9e0-8badc094c34f/download
https://repository.eafit.edu.co/bitstreams/7fa63b30-0157-4601-ab5c-9e79f0cf86bc/download
https://repository.eafit.edu.co/bitstreams/a36325fb-d2e4-4d51-a17b-8d18f46adb64/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
dbec2adabbe4389295d973f7b0877779
50e2f5934e93de0a65ffa7b6d51dea50
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110140619554816
spelling 2016-11-18T21:53:09Z20142016-11-18T21:53:09Z1617-7061http://hdl.handle.net/10784/966610.1002/pamm.201410214Recent investigations have found a distinct correlation of effective properties of porous media to sigmoidal functions, where one axis is the Reynolds number Re and the other is the effective property dependent of Re, Θ = S (Re) -- One of these properties is tortuosity -- At very low Re (seepage flow), there is a characteristic value of tortuosity, and it is the upper horizontal asymptote of the sigmoidal function -- With higher values of Re (transient flow) the tortuosity value decreases, until a lower asymptote is reached (turbulent flow) -- Estimations of this parameter have been limited to the low Reynolds regime in the study of porous media -- The current state of the art presents different numerical measurements of tortuosity, such as skeletization, centroid binding, and arc length of streamlines -- These are solutions for the low Re regime. So far, for high Re, only the arc length of stream lines has been used to calculate tortuosity -- The present approach involves the simulation of fluid flow in large domains and high Re, which requires numerous resources, and often presents convergence problems -- In response to this, we propose a geometrical method to estimate the limit of tortuosity of porous media at Re → ∞, from the streamlines calculated at low Re limit -- We test our method by calculating the tortuosity limits in a fibrous porous media, and comparing the estimated values with numerical benchmark results -- Ongoing work includes the geometric estimation of different intrinsic properties of porous mediaapplication/pdfengWILEY-VCH VerlagPAMM, Volume 14, Issue 1, pp 453-454http://onlinelibrary.wiley.com/doi/10.1002/pamm.201410214/abstractAcceso cerradohttp://purl.org/coar/access_right/c_14cbDetermining the limits of geometrical tortuosity from seepage flow calculations in porous mediainfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1MATERIALES POROSOSDISTRIBUCIÓN DE GAUSSASÍNTOTASNÚMERO DE REYNOLDSPorous materialsGauss distributionAsymptotesReynolds numberPorous materialsGauss distributionAsymptotesReynolds numberFunción sigmoideFactor de TortuosidadAlgoritmo de esqueletizaciónUniversidad EAFIT. Departamento de Ingeniería MecánicaUribe, DavidOsorno, MaríaSivanesapillai, RakulanSteeb, HolgerRuíz, ÓscarLaboratorio CAD/CAM/CAEPAMMPAMM141453454LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/958d967d-619e-41c6-a9e0-8badc094c34f/download76025f86b095439b7ac65b367055d40cMD51ORIGINALDetermining_the_limits.htmlDetermining_the_limits.htmltext/html266https://repository.eafit.edu.co/bitstreams/7fa63b30-0157-4601-ab5c-9e79f0cf86bc/downloaddbec2adabbe4389295d973f7b0877779MD52Determining_the_limits.pdfDetermining_the_limits.pdfWeb Page Printapplication/pdf137051https://repository.eafit.edu.co/bitstreams/a36325fb-d2e4-4d51-a17b-8d18f46adb64/download50e2f5934e93de0a65ffa7b6d51dea50MD5310784/9666oai:repository.eafit.edu.co:10784/96662021-09-03 15:43:37.907open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK