An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
Unsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporatio...
- Autores:
-
Ariza-Jiménez L.
Pinel N.
Villa L.F.
Quintero O.L.
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/26750
- Acceso en línea:
- https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=9841
http://hdl.handle.net/10784/26750
- Palabra clave:
- Biomedical
engineering
Biophysics
Entropy
Graphic
methods
Machine
learning
Unsupervised
learning
Biological
data
Clustering
Graph
Metagenomic
binning
Spike-sorting
Sorting
- Rights
- License
- https://v2.sherpa.ac.uk/id/publication/issn/1680-0737
id |
REPOEAFIT2_ba95c38c1713a30766e05af55111e37b |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/26750 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2021-03-23T19:52:10Z2019-10-012021-03-23T19:52:10Zhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=984116800737SCOPUS;2-s2.0-85075700831http://hdl.handle.net/10784/2675010.1007/978-3-030-30648-9_41Unsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporation of entropy related measures into the process of constructing graph-based representations for biological datasets in order to uncover their inner structure. Experimental results demonstrated the potential of the proposed entropy-based graph data representation to cope with biological applications related to unsupervised learning problems, such as metagenomic binning and neuronal spike sorting, in which it is necessary to organize data into unknown and meaningful groups. © 2020, Springer Nature Switzerland AG.engSPRINGERhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075700831&doi=10.1007%2f978-3-030-30648-9_41&partnerID=40&md5=930b9690370f241ec1412784c1f71f70https://v2.sherpa.ac.uk/id/publication/issn/1680-0737Acceso restringidohttp://purl.org/coar/access_right/c_16ecIfmbe ProceedingsBiomedicalengineeringBiophysicsEntropyGraphicmethodsMachinelearningUnsupervisedlearningBiologicaldataClusteringGraphMetagenomicbinningSpike-sortingSortingAn Entropy-Based Graph Construction Method for Representing and Clustering Biological DatapublishedVersioninfo:eu-repo/semantics/publishedVersionarticleinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Universidad EAFIT. Departamento de CienciasAriza-Jiménez L.Pinel N.Villa L.F.Quintero O.L.Biodiversidad, Evolución y ConservaciónIfmbe Proceedings10784/26750oai:repository.eafit.edu.co:10784/267502022-04-27 15:49:59.569metadata.onlyhttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data |
title |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data |
spellingShingle |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data Biomedical engineering Biophysics Entropy Graphic methods Machine learning Unsupervised learning Biological data Clustering Graph Metagenomic binning Spike-sorting Sorting |
title_short |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data |
title_full |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data |
title_fullStr |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data |
title_full_unstemmed |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data |
title_sort |
An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data |
dc.creator.fl_str_mv |
Ariza-Jiménez L. Pinel N. Villa L.F. Quintero O.L. |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ciencias |
dc.contributor.author.none.fl_str_mv |
Ariza-Jiménez L. Pinel N. Villa L.F. Quintero O.L. |
dc.contributor.researchgroup.spa.fl_str_mv |
Biodiversidad, Evolución y Conservación |
dc.subject.eng.fl_str_mv |
Biomedical engineering Biophysics Entropy Graphic methods Machine learning Unsupervised learning Biological data Clustering Graph Metagenomic binning Spike-sorting Sorting |
topic |
Biomedical engineering Biophysics Entropy Graphic methods Machine learning Unsupervised learning Biological data Clustering Graph Metagenomic binning Spike-sorting Sorting |
description |
Unsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporation of entropy related measures into the process of constructing graph-based representations for biological datasets in order to uncover their inner structure. Experimental results demonstrated the potential of the proposed entropy-based graph data representation to cope with biological applications related to unsupervised learning problems, such as metagenomic binning and neuronal spike sorting, in which it is necessary to organize data into unknown and meaningful groups. © 2020, Springer Nature Switzerland AG. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-10-01 |
dc.date.available.none.fl_str_mv |
2021-03-23T19:52:10Z |
dc.date.accessioned.none.fl_str_mv |
2021-03-23T19:52:10Z |
dc.type.eng.fl_str_mv |
publishedVersion info:eu-repo/semantics/publishedVersion article info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=9841 |
dc.identifier.issn.none.fl_str_mv |
16800737 |
dc.identifier.other.none.fl_str_mv |
SCOPUS;2-s2.0-85075700831 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/26750 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-30648-9_41 |
url |
https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=9841 http://hdl.handle.net/10784/26750 |
identifier_str_mv |
16800737 SCOPUS;2-s2.0-85075700831 10.1007/978-3-030-30648-9_41 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075700831&doi=10.1007%2f978-3-030-30648-9_41&partnerID=40&md5=930b9690370f241ec1412784c1f71f70 |
dc.rights.none.fl_str_mv |
https://v2.sherpa.ac.uk/id/publication/issn/1680-0737 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
https://v2.sherpa.ac.uk/id/publication/issn/1680-0737 Acceso restringido http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
SPRINGER |
publisher.none.fl_str_mv |
SPRINGER |
dc.source.none.fl_str_mv |
Ifmbe Proceedings |
institution |
Universidad EAFIT |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110328836849664 |