A simple proof of Abel’s theorem on the lemniscate

Since Abel's original publication in 1827, his remarkable theorem on the constructibility of the division of the lemniscata has been demonstrated with the help of the theory of elliptic functions. The test given by Rosen in 1981 is considered, today, as definitive. It also uses the modern and i...

Full description

Autores:
Solanilla, Leonardo
Palacio, Óscar
Hernández, Uriel
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14480
Acceso en línea:
http://hdl.handle.net/10784/14480
Palabra clave:
Abel'S Theorem On The Lemniscata
Gauss Lemniscratic Functions
Geometric Constructions
Teorema De Abel Sobre La Lemniscata
Funciones Lemniscáticas De Gauss
Construcciones Geométricas
Rights
License
Copyright (c) 2010 Leonardo Solanilla, Óscar Palacio, Uriel Hernández
id REPOEAFIT2_b4a9274572b0ba5514f23dfa5b3a986a
oai_identifier_str oai:repository.eafit.edu.co:10784/14480
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2010-12-012019-11-22T19:01:23Z2010-12-012019-11-22T19:01:23Z2256-43141794-9165http://hdl.handle.net/10784/14480Since Abel's original publication in 1827, his remarkable theorem on the constructibility of the division of the lemniscata has been demonstrated with the help of the theory of elliptic functions. The test given by Rosen in 1981 is considered, today, as definitive. It also uses the modern and intricate Class Field Theory. Here is a new, short and simple demonstration of Abel's theorem for the lemniscata along with its reciprocal. The only tools are the additive properties of the Gaussian lemniscological functions and some elements of Galois theory.Desde la publicación original de Abel en 1827, su notable teorema sobre la constructibilidad de la división de la lemniscata se ha demostrado con ayuda de la teoría de las funciones elípticas. La prueba dada por Rosen en 1981 seconsidera, hoy por hoy, como definitiva. En ella se utiliza, además, la moderna e intrincada Class Field Theory. Aquí se presenta una demostración nueva, cortay simple del teorema de Abel para la lemniscata junto con su recíproco. Las únicas herramientas son las propiedades aditivas de las funciones lemniscáticas de Gauss y algunos elementos de teoría de Galois.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/331http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/331Copyright (c) 2010 Leonardo Solanilla, Óscar Palacio, Uriel HernándezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 6, No 12 (2010)A simple proof of Abel’s theorem on the lemniscateDemostración simple del teorema de Abel sobre la lemniscataarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Abel'S Theorem On The LemniscataGauss Lemniscratic FunctionsGeometric ConstructionsTeorema De Abel Sobre La LemniscataFunciones Lemniscáticas De GaussConstrucciones GeométricasSolanilla, LeonardoPalacio, ÓscarHernández, UrielUniversidad del TolimaIngeniería y Ciencia6124349ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/afb55855-2449-421e-a538-cc9c8b346ea8/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL2.pdf2.pdfTexto completo PDFapplication/pdf149289https://repository.eafit.edu.co/bitstreams/b982ef5c-5388-4930-9ca3-6d7a037b3b5c/downloadcd2cbebd0f93c22f156d364049f14e56MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/7d713c4f-f192-4558-98ef-cb62a906c1d7/download69f4bded8ac78c10d2ce8aad1c2740c2MD5310784/14480oai:repository.eafit.edu.co:10784/144802020-03-02 22:19:58.366open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv A simple proof of Abel’s theorem on the lemniscate
dc.title.spa.fl_str_mv Demostración simple del teorema de Abel sobre la lemniscata
title A simple proof of Abel’s theorem on the lemniscate
spellingShingle A simple proof of Abel’s theorem on the lemniscate
Abel'S Theorem On The Lemniscata
Gauss Lemniscratic Functions
Geometric Constructions
Teorema De Abel Sobre La Lemniscata
Funciones Lemniscáticas De Gauss
Construcciones Geométricas
title_short A simple proof of Abel’s theorem on the lemniscate
title_full A simple proof of Abel’s theorem on the lemniscate
title_fullStr A simple proof of Abel’s theorem on the lemniscate
title_full_unstemmed A simple proof of Abel’s theorem on the lemniscate
title_sort A simple proof of Abel’s theorem on the lemniscate
dc.creator.fl_str_mv Solanilla, Leonardo
Palacio, Óscar
Hernández, Uriel
dc.contributor.author.spa.fl_str_mv Solanilla, Leonardo
Palacio, Óscar
Hernández, Uriel
dc.contributor.affiliation.spa.fl_str_mv Universidad del Tolima
dc.subject.keyword.eng.fl_str_mv Abel'S Theorem On The Lemniscata
Gauss Lemniscratic Functions
Geometric Constructions
topic Abel'S Theorem On The Lemniscata
Gauss Lemniscratic Functions
Geometric Constructions
Teorema De Abel Sobre La Lemniscata
Funciones Lemniscáticas De Gauss
Construcciones Geométricas
dc.subject.keyword.spa.fl_str_mv Teorema De Abel Sobre La Lemniscata
Funciones Lemniscáticas De Gauss
Construcciones Geométricas
description Since Abel's original publication in 1827, his remarkable theorem on the constructibility of the division of the lemniscata has been demonstrated with the help of the theory of elliptic functions. The test given by Rosen in 1981 is considered, today, as definitive. It also uses the modern and intricate Class Field Theory. Here is a new, short and simple demonstration of Abel's theorem for the lemniscata along with its reciprocal. The only tools are the additive properties of the Gaussian lemniscological functions and some elements of Galois theory.
publishDate 2010
dc.date.issued.none.fl_str_mv 2010-12-01
dc.date.available.none.fl_str_mv 2019-11-22T19:01:23Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:01:23Z
dc.date.none.fl_str_mv 2010-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14480
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14480
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/331
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/331
dc.rights.eng.fl_str_mv Copyright (c) 2010 Leonardo Solanilla, Óscar Palacio, Uriel Hernández
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2010 Leonardo Solanilla, Óscar Palacio, Uriel Hernández
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 6, No 12 (2010)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/afb55855-2449-421e-a538-cc9c8b346ea8/download
https://repository.eafit.edu.co/bitstreams/b982ef5c-5388-4930-9ca3-6d7a037b3b5c/download
https://repository.eafit.edu.co/bitstreams/7d713c4f-f192-4558-98ef-cb62a906c1d7/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
cd2cbebd0f93c22f156d364049f14e56
69f4bded8ac78c10d2ce8aad1c2740c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110108986114048