The π-geography problem and the Hurwitz problem

Let d ≥ 2 be an integer and a partition of d. In this article we study the problem of for which pairs of integers (a, b) there is a branched coating F: ∑ → D2 = {z ∈ C: | z | 6 ≤ 1} that has critical values, x (∑) = −b, and such that the monodromy that is obtained when crossing the border of D2 in a...

Full description

Autores:
Cadavid, Carlos
Vélez-C.,Juan D.
Tipo de recurso:
Fecha de publicación:
2009
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/14512
Acceso en línea:
http://hdl.handle.net/10784/14512
Palabra clave:
Branched Coating
Critical Value
Characteristic Of Euler
Riemann – Hurwitz Formula
Hurwitz Problem
Monodromia
Recubrimiento Ramificado
Valor Crítico
Característica De Euler
Fórmula De Riemann–Hurwitz
Hurwitz Problem
Monodromía
Rights
License
Copyright (c) 2009 Carlos Cadavid, Juan D. Vélez-C.
id REPOEAFIT2_acdcdea731b34ae2bc8e466ac5898b8a
oai_identifier_str oai:repository.eafit.edu.co:10784/14512
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2009-06-012019-11-22T19:06:22Z2009-06-012019-11-22T19:06:22Z2256-43141794-9165http://hdl.handle.net/10784/14512Let d ≥ 2 be an integer and a partition of d. In this article we study the problem of for which pairs of integers (a, b) there is a branched coating F: ∑ → D2 = {z ∈ C: | z | 6 ≤ 1} that has critical values, x (∑) = −b, and such that the monodromy that is obtained when crossing the border of D2 in a positive sense belongs to the conjugation class in the symmetric group Sd determined by the π partition. Four variants of this problem are studied: i) without requiring domain connection, ii) requiring domain connection, iii) without requiring domain connection, but requiring that the coating be semi-stable, iv) requiring that the domain be related and that the coating is semi-stable. Complete solutions of the first two variants are obtained, and a partial solution of the remaining variants is obtained. It also explains how the interest in these problems arises from the study of an analogous question for functions whose domain is 4-dimensional.Sea d ≥ 2 un entero y una partición de d. En este artículo se estudia el problema de para qué pares de enteros (a, b) existe un recubrimiento ramificado F : ∑ → D2 = {z ∈ C : |z| 6 ≤ 1} que tenga a valores críticos, x(∑) = −b, y tal que la monodromía que se obtiene cuando se recorre la frontera de D2 en sentido positivo pertenece a la clase de conjugancia en el grupo simétrico Sd determinada por la partición π. Se estudian cuatro variantes de este problema: i) sin requerir conexidad del dominio, ii) requiriendo conexidad del dominio, iii) sin requerir conexidad del dominio, pero exigiendo que el recubrimiento sea semiestable, iv) requiriendo que el dominio sea conexo y que el recubrimiento sea semiestable. Se obtienen soluciones completas de las primeras dos variantes, y se obtiene una solución parcial de las variantes restantes. Además se explica cómo el interés por estos problemas surge del estudio de una pregunta análoga para funciones cuyo dominio es 4-dimensional.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/469http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/469Copyright (c) 2009 Carlos Cadavid, Juan D. Vélez-C.Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 5, No 9 (2009)The π-geography problem and the Hurwitz problemEl problema de π-geografía y el problema de Hurwitzarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Branched CoatingCritical ValueCharacteristic Of EulerRiemann – Hurwitz FormulaHurwitz ProblemMonodromiaRecubrimiento RamificadoValor CríticoCaracterística De EulerFórmula De Riemann–HurwitzHurwitz ProblemMonodromíaCadavid, CarlosVélez-C.,Juan D.Universidad EAFITUniversidad Nacional de Colombia, MedellínIngeniería y Ciencia5991122ing.cienc.ORIGINAL5.pdf5.pdfTexto completo PDFapplication/pdf289159https://repository.eafit.edu.co/bitstreams/5321d4ab-d394-4f78-a3d4-0897645deaa0/download959f48c27d9cbc50b89d1c3e6004530fMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/5766f8af-24db-4854-b42c-8e985e63ed9a/downloada162452e4d8d4daab8ae3774a0fbe750MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/f78e5ee8-8d19-4dea-94cd-c0b792ddf2dc/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/14512oai:repository.eafit.edu.co:10784/145122020-03-02 23:00:43.53open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv The π-geography problem and the Hurwitz problem
dc.title.spa.fl_str_mv El problema de π-geografía y el problema de Hurwitz
title The π-geography problem and the Hurwitz problem
spellingShingle The π-geography problem and the Hurwitz problem
Branched Coating
Critical Value
Characteristic Of Euler
Riemann – Hurwitz Formula
Hurwitz Problem
Monodromia
Recubrimiento Ramificado
Valor Crítico
Característica De Euler
Fórmula De Riemann–Hurwitz
Hurwitz Problem
Monodromía
title_short The π-geography problem and the Hurwitz problem
title_full The π-geography problem and the Hurwitz problem
title_fullStr The π-geography problem and the Hurwitz problem
title_full_unstemmed The π-geography problem and the Hurwitz problem
title_sort The π-geography problem and the Hurwitz problem
dc.creator.fl_str_mv Cadavid, Carlos
Vélez-C.,Juan D.
dc.contributor.author.spa.fl_str_mv Cadavid, Carlos
Vélez-C.,Juan D.
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT
Universidad Nacional de Colombia, Medellín
dc.subject.keyword.eng.fl_str_mv Branched Coating
Critical Value
Characteristic Of Euler
Riemann – Hurwitz Formula
Hurwitz Problem
Monodromia
topic Branched Coating
Critical Value
Characteristic Of Euler
Riemann – Hurwitz Formula
Hurwitz Problem
Monodromia
Recubrimiento Ramificado
Valor Crítico
Característica De Euler
Fórmula De Riemann–Hurwitz
Hurwitz Problem
Monodromía
dc.subject.keyword.spa.fl_str_mv Recubrimiento Ramificado
Valor Crítico
Característica De Euler
Fórmula De Riemann–Hurwitz
Hurwitz Problem
Monodromía
description Let d ≥ 2 be an integer and a partition of d. In this article we study the problem of for which pairs of integers (a, b) there is a branched coating F: ∑ → D2 = {z ∈ C: | z | 6 ≤ 1} that has critical values, x (∑) = −b, and such that the monodromy that is obtained when crossing the border of D2 in a positive sense belongs to the conjugation class in the symmetric group Sd determined by the π partition. Four variants of this problem are studied: i) without requiring domain connection, ii) requiring domain connection, iii) without requiring domain connection, but requiring that the coating be semi-stable, iv) requiring that the domain be related and that the coating is semi-stable. Complete solutions of the first two variants are obtained, and a partial solution of the remaining variants is obtained. It also explains how the interest in these problems arises from the study of an analogous question for functions whose domain is 4-dimensional.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009-06-01
dc.date.available.none.fl_str_mv 2019-11-22T19:06:22Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:06:22Z
dc.date.none.fl_str_mv 2009-06-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14512
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14512
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/469
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/469
dc.rights.eng.fl_str_mv Copyright (c) 2009 Carlos Cadavid, Juan D. Vélez-C.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2009 Carlos Cadavid, Juan D. Vélez-C.
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 5, No 9 (2009)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/5321d4ab-d394-4f78-a3d4-0897645deaa0/download
https://repository.eafit.edu.co/bitstreams/5766f8af-24db-4854-b42c-8e985e63ed9a/download
https://repository.eafit.edu.co/bitstreams/f78e5ee8-8d19-4dea-94cd-c0b792ddf2dc/download
bitstream.checksum.fl_str_mv 959f48c27d9cbc50b89d1c3e6004530f
a162452e4d8d4daab8ae3774a0fbe750
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110153302081536