A High-Order HDG Method with Dubiner Basis for Elliptic Flow Problems

We propose a standard hybridizable discontinuous Galerkin (HDG) method to solve a classic problem in fluids mechanics: Darcy’s law. This model describes the behavior of a fluid trough a porous medium and it is relevant to the flow patterns on the macro scale. Here we present the theoretical results...

Full description

Autores:
Bastidas, Manuela
Lopez-Rodríguez, Bibiana
Osorio, Mauricio
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/25804
Acceso en línea:
http://hdl.handle.net/10784/25804
Palabra clave:
Hybridizable discontinuous Galerkin methods
flow in porous media
Dubiner’s basis
high order convergence
Método de Galerkin discontinuo hibridizable
flujo en medioporoso
bases de Dubiner
convergencia de alto orden
Rights
openAccess
License
Copyright © 2020 Manuela Bastidas, Bibiana Lopez-Rodríguez, Mauricio Osorio
Description
Summary:We propose a standard hybridizable discontinuous Galerkin (HDG) method to solve a classic problem in fluids mechanics: Darcy’s law. This model describes the behavior of a fluid trough a porous medium and it is relevant to the flow patterns on the macro scale. Here we present the theoretical results of existence and uniqueness of the weak and discontinuous solution of the second order elliptic equation, as well as the predicted convergence order of the HDG method. We highlight the use and implementation of Dubiner polynomial basis functions that allow us to develop a general and efficient high order numerical approximation. We also show some numerical examples that validate the theoretical results.