Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio
This paper focuses on the study of a first approach to an optimal portfolio in the Colombian Energy Market using Artificial Intelligence. Specifically, ANFIS and Clustering techniques are applied. The methodology is implemented using the Matlab Toolboxes for clustering and FIS generation. Te results...
- Autores:
-
Palacios, Alejandro
Giraldo, Marcela
Quintero, O. L.
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/4609
- Acceso en línea:
- http://hdl.handle.net/10784/4609
- Palabra clave:
- Energy Markets
Artificial Intelligence
Fuzzy Modeling
Neural Networks
ANFIS
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_ab5b51c0f7e14146dd0f8cce22929f75 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/4609 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2014-12-12T15:41:26Z20142014-12-12T15:41:26Zhttp://hdl.handle.net/10784/4609This paper focuses on the study of a first approach to an optimal portfolio in the Colombian Energy Market using Artificial Intelligence. Specifically, ANFIS and Clustering techniques are applied. The methodology is implemented using the Matlab Toolboxes for clustering and FIS generation. Te results are presented, as well as the analysis of them. A first approximation to an optimal portfolio obtained with this methodology is shown. Consequently, some conclusions of the different techniques available for the same purpose are discussed. Finally the future work is proposed.engUniversidad EAFITGrupo de Investigación Modelado MatemáticoEscuela de CienciasColombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal PortfolioworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Energy MarketsArtificial IntelligenceFuzzy ModelingNeural NetworksANFISUniversidad EAFIT. Escuela de Ciencias. Grupo de Investigación Modelado MatemáticoPalacios, AlejandroGiraldo, MarcelaQuintero, O. L.ORIGINAL26 ColombianEnergyMarketApproachAnfis.pdf26 ColombianEnergyMarketApproachAnfis.pdfapplication/pdf709096https://repository.eafit.edu.co/bitstreams/6fc0651b-b06d-49ce-b556-3f952db49174/downloada48823be262f3bf32b5b8bfeca1f084cMD5110784/4609oai:repository.eafit.edu.co:10784/46092014-12-12 13:47:11.853open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio |
title |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio |
spellingShingle |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio Energy Markets Artificial Intelligence Fuzzy Modeling Neural Networks ANFIS |
title_short |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio |
title_full |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio |
title_fullStr |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio |
title_full_unstemmed |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio |
title_sort |
Colombian Energy Market: An approach of Anfis and Clustering Techniques to an Optimal Portfolio |
dc.creator.fl_str_mv |
Palacios, Alejandro Giraldo, Marcela Quintero, O. L. |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Modelado Matemático |
dc.contributor.author.spa.fl_str_mv |
Palacios, Alejandro Giraldo, Marcela Quintero, O. L. |
dc.subject.keyword.eng.fl_str_mv |
Energy Markets Artificial Intelligence Fuzzy Modeling Neural Networks ANFIS |
topic |
Energy Markets Artificial Intelligence Fuzzy Modeling Neural Networks ANFIS |
description |
This paper focuses on the study of a first approach to an optimal portfolio in the Colombian Energy Market using Artificial Intelligence. Specifically, ANFIS and Clustering techniques are applied. The methodology is implemented using the Matlab Toolboxes for clustering and FIS generation. Te results are presented, as well as the analysis of them. A first approximation to an optimal portfolio obtained with this methodology is shown. Consequently, some conclusions of the different techniques available for the same purpose are discussed. Finally the future work is proposed. |
publishDate |
2014 |
dc.date.available.none.fl_str_mv |
2014-12-12T15:41:26Z |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2014-12-12T15:41:26Z |
dc.type.eng.fl_str_mv |
workingPaper |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/4609 |
url |
http://hdl.handle.net/10784/4609 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Grupo de Investigación Modelado Matemático |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ciencias |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/6fc0651b-b06d-49ce-b556-3f952db49174/download |
bitstream.checksum.fl_str_mv |
a48823be262f3bf32b5b8bfeca1f084c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110188570935296 |