Solving the Puzzle: A New Measure of Trade Distance In The Gravity
The gravity model is a workhorse tool that has been widely used in international trade. However, one empirical question that frequently arises is related to the conceptualization and measurement of distance. To overcome this limitation, our study proposes an index of distance based on multivariate s...
- Autores:
-
Mejía Mejía, Juan Felipe
Ramírez Hassan, Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/993
- Acceso en línea:
- http://hdl.handle.net/10784/993
- Palabra clave:
- Factor Analysis for Mixed Data
Gravity Equation Model
Panel Data
Trade Distance
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_a78d3ce99692c02ce40358aa340615f5 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/993 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-07-11T19:34:51Z2014-06-112013-07-11T19:34:51Zhttp://hdl.handle.net/10784/993F11F14The gravity model is a workhorse tool that has been widely used in international trade. However, one empirical question that frequently arises is related to the conceptualization and measurement of distance. To overcome this limitation, our study proposes an index of distance based on multivariate statistical analysis. Specifically, we build our index using Factorial Analysis for Mixed Data. For robustness check, we use Principal Component Analysis. Both techniques summarize in one factor information related to geographical, cultural, political and economic variables that might affect international trade between countries. We use this index as proxy of distance, and Gross Domestic Product as proxy of mass, and we run some panel data exercises between 1995 and 2000 for 10 Latin American economies. Estimations indicate that the sign of the load factors in Factor Analysis for Mixed Data are intuitively plausible, and that panel data exercises give sensible robust outcomes.engUniversidad EAFITEscuela de Economía y FinanzasSolving the Puzzle: A New Measure of Trade Distance In The GravityworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Factor Analysis for Mixed DataGravity Equation ModelPanel DataTrade DistanceMejía Mejía, Juan FelipeRamírez Hassan, Andrésjfmejia@eafit.edu.coaramir21@eafit.edu.coLICENSElicense.txtlicense.txttext/plain; charset=utf-8968https://repository.eafit.edu.co/bitstreams/bd1c5a92-851a-4ede-9d76-13abdc6cba25/download4cc960a42e07fca3808fbd6b90ab2a1fMD52ORIGINAL2013_12_Juan_Felipe_Mejia.pdf2013_12_Juan_Felipe_Mejia.pdfDocumento de trabajo de investigaciónapplication/pdf420483https://repository.eafit.edu.co/bitstreams/dbc532e1-519e-442d-8143-e4f0fcdd29f3/download9b14a8a72a9521628dba44cbde3c31c5MD5310784/993oai:repository.eafit.edu.co:10784/9932024-03-05 14:06:02.928open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coQXV0b3JpemFjacOzbiBkZSBQdWJsaWNhY2nDs24gZGUgVmVyc2nDs24gZWxlY3Ryw7NuaWNhIGRlIGxhIFRlc2lzIG8gcHJveWVjdG8gZGUgR3JhZG8uClBvciBtZWRpbyBkZSBlc3RlIGVzY3JpdG8gYXV0b3Jpem8gZW4gZm9ybWEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gYSBsYSBVbml2ZXJzaWRhZCBFQUZJVCBwYXJhIHNpdHVhciBlbiBsYSBCaWJsaW90ZWNhIEx1aXMgRWNoYXZhcnLDrWEgVmlsbGVnYXMgdW4gZWplbXBsYXIgZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28uCgpJZ3VhbG1lbnRlIGF1dG9yaXpvIGVuIGZvcm1hIGdyYXR1aXRhIHkgcG9yIHRpZW1wbyBpbmRlZmluaWRvIGEgcHVibGljYXIgZW4gZm9ybWEgZWxlY3Ryw7NuaWNhIG8gZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vd3d3LmVhZml0LmVkdS5jby9iaWJsaW90ZWNhLiAKClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgeWEgc2VhIGxhIGJpYmxpb3RlY2EgbyBlbiBtZWRpbyBlbGVjdHLDs25pY28gcG9kcsOhIGNvcGlhciBhcGFydGVzIGRlbCB0ZXh0byBjaXRhbmRvIHNpZW1wcmUgbGEgZnVlbnRlcywgZXMgZGVjaXIgZWwgdGl0dWxvIGRlbCB0cmFiYWpvIHkgZWwgYXV0b3IuIEVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHRvdGFsIG8gcGFyY2lhbG1lbnRlCmxhIG9icmEuCgpMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgZGUgdGVyY2Vyb3MgcXVlIGludm9xdWVuIGF1dG9yw61hIGRlIGxhIG9icmEgcXVlIHByZXNlbnRvLgo= |
dc.title.eng.fl_str_mv |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity |
title |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity |
spellingShingle |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity Factor Analysis for Mixed Data Gravity Equation Model Panel Data Trade Distance |
title_short |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity |
title_full |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity |
title_fullStr |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity |
title_full_unstemmed |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity |
title_sort |
Solving the Puzzle: A New Measure of Trade Distance In The Gravity |
dc.creator.fl_str_mv |
Mejía Mejía, Juan Felipe Ramírez Hassan, Andrés |
dc.contributor.author.none.fl_str_mv |
Mejía Mejía, Juan Felipe Ramírez Hassan, Andrés |
dc.subject.keyword.eng.fl_str_mv |
Factor Analysis for Mixed Data Gravity Equation Model Panel Data Trade Distance |
topic |
Factor Analysis for Mixed Data Gravity Equation Model Panel Data Trade Distance |
description |
The gravity model is a workhorse tool that has been widely used in international trade. However, one empirical question that frequently arises is related to the conceptualization and measurement of distance. To overcome this limitation, our study proposes an index of distance based on multivariate statistical analysis. Specifically, we build our index using Factorial Analysis for Mixed Data. For robustness check, we use Principal Component Analysis. Both techniques summarize in one factor information related to geographical, cultural, political and economic variables that might affect international trade between countries. We use this index as proxy of distance, and Gross Domestic Product as proxy of mass, and we run some panel data exercises between 1995 and 2000 for 10 Latin American economies. Estimations indicate that the sign of the load factors in Factor Analysis for Mixed Data are intuitively plausible, and that panel data exercises give sensible robust outcomes. |
publishDate |
2013 |
dc.date.available.none.fl_str_mv |
2013-07-11T19:34:51Z |
dc.date.accessioned.none.fl_str_mv |
2013-07-11T19:34:51Z |
dc.date.issued.none.fl_str_mv |
2014-06-11 |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/993 |
dc.identifier.jel.none.fl_str_mv |
F11 F14 |
url |
http://hdl.handle.net/10784/993 |
identifier_str_mv |
F11 F14 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/bd1c5a92-851a-4ede-9d76-13abdc6cba25/download https://repository.eafit.edu.co/bitstreams/dbc532e1-519e-442d-8143-e4f0fcdd29f3/download |
bitstream.checksum.fl_str_mv |
4cc960a42e07fca3808fbd6b90ab2a1f 9b14a8a72a9521628dba44cbde3c31c5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110164394967040 |