Some Exact Solutions for a Klein Gordon Equation

In solving practical problems in science and engineering arises as a direct consequence differential equations that explains the dynamics of the phenomena. Finding exact solutions to this equations provides importan information about the behavior of physical systems. The Lie symmetry method allows t...

Full description

Autores:
Ortíz Álvarez, H H
Jiménez García, F N
Posso Agudelo, Abel Enrique
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14449
Acceso en línea:
http://hdl.handle.net/10784/14449
Palabra clave:
Lie Simmetries
Klein Gordon Equation
Invariant Solutions
Simmetrías De Mentiras
Ecuación De Klein Gordon
Soluciones Invariables
Rights
License
Copyright (c) 2012 H H Ortíz Álvarez, F N Jiménez García, Abel Enrique Posso Agudelo
id REPOEAFIT2_a592653703b86a0b91619e586410e27f
oai_identifier_str oai:repository.eafit.edu.co:10784/14449
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2012-12-012019-11-22T18:49:14Z2012-12-012019-11-22T18:49:14Z2256-43141794-9165http://hdl.handle.net/10784/1444910.17230/ingciencia.8.16.3In solving practical problems in science and engineering arises as a direct consequence differential equations that explains the dynamics of the phenomena. Finding exact solutions to this equations provides importan information about the behavior of physical systems. The Lie symmetry method allows tofind invariant solutions under certain groups of transformations for differential equations.This method not very well known and used is of great importance in the scientific community. By this approach it was possible to find several exactinvariant solutions for the Klein Gordon Equation uxx − utt = k(u). A particularcase, The Kolmogorov equation uxx − utt = k1u + k2un was considered.These equations appear in the study of relativistic and quantum physics. The general solutions found, could be used for future explorations on the study for other specific K(u) functions.Al resolver problemas prácticos en ciencia e ingeniería surge como consecuencia directa las ecuaciones diferenciales que explican la dinámica de los fenómenos. Encontrar soluciones exactas a estas ecuaciones proporciona información importante sobre el comportamiento de los sistemas físicos. El método de simetría de Lie permite encontrar soluciones invariantes bajo ciertos grupos de transformaciones para ecuaciones diferenciales. Este método, poco conocido y utilizado, es de gran importancia en la comunidad científica. Mediante este enfoque, fue posible encontrar varias soluciones exactas invariables para la ecuación de Klein Gordon uxx - utt = k (u). Un caso particular, se consideró la ecuación de Kolmogorov uxx - utt = k1u + k2un. Estas ecuaciones aparecen en el estudio de la física relativista y cuántica. Las soluciones generales encontradas podrían utilizarse para futuras exploraciones en el estudio para otras funciones específicas de K (u).application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1706http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1706Copyright (c) 2012 H H Ortíz Álvarez, F N Jiménez García, Abel Enrique Posso AgudeloAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 8, No 16 (2012)Some Exact Solutions for a Klein Gordon EquationAlgunas soluciones exactas para una ecuación de Klein Gordonarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Lie SimmetriesKlein Gordon EquationInvariant SolutionsSimmetrías De MentirasEcuación De Klein GordonSoluciones InvariablesOrtíz Álvarez, H HJiménez García, F NPosso Agudelo, Abel EnriqueUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaUniversidad TecnológicaIngeniería y Ciencia8165770ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/cc95d46a-b559-47ee-88d1-da9ecaa13b5e/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL3.pdf3.pdfTexto completo PDFapplication/pdf1455949https://repository.eafit.edu.co/bitstreams/ff61995f-ae25-4dc4-bb5e-ae0452b1085c/download94c90cb3f1c8f0bb7ba2326e399059e9MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/02d7e549-bf76-4428-9fc7-8c98ebc971c2/download9a2d5c95a59b25a3caa8d633c712ecb9MD5310784/14449oai:repository.eafit.edu.co:10784/144492020-03-02 21:50:21.465open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Some Exact Solutions for a Klein Gordon Equation
dc.title.spa.fl_str_mv Algunas soluciones exactas para una ecuación de Klein Gordon
title Some Exact Solutions for a Klein Gordon Equation
spellingShingle Some Exact Solutions for a Klein Gordon Equation
Lie Simmetries
Klein Gordon Equation
Invariant Solutions
Simmetrías De Mentiras
Ecuación De Klein Gordon
Soluciones Invariables
title_short Some Exact Solutions for a Klein Gordon Equation
title_full Some Exact Solutions for a Klein Gordon Equation
title_fullStr Some Exact Solutions for a Klein Gordon Equation
title_full_unstemmed Some Exact Solutions for a Klein Gordon Equation
title_sort Some Exact Solutions for a Klein Gordon Equation
dc.creator.fl_str_mv Ortíz Álvarez, H H
Jiménez García, F N
Posso Agudelo, Abel Enrique
dc.contributor.author.spa.fl_str_mv Ortíz Álvarez, H H
Jiménez García, F N
Posso Agudelo, Abel Enrique
dc.contributor.affiliation.spa.fl_str_mv Universidad Nacional de Colombia
Universidad Nacional de Colombia
Universidad Tecnológica
dc.subject.keyword.eng.fl_str_mv Lie Simmetries
Klein Gordon Equation
Invariant Solutions
topic Lie Simmetries
Klein Gordon Equation
Invariant Solutions
Simmetrías De Mentiras
Ecuación De Klein Gordon
Soluciones Invariables
dc.subject.keyword.spa.fl_str_mv Simmetrías De Mentiras
Ecuación De Klein Gordon
Soluciones Invariables
description In solving practical problems in science and engineering arises as a direct consequence differential equations that explains the dynamics of the phenomena. Finding exact solutions to this equations provides importan information about the behavior of physical systems. The Lie symmetry method allows tofind invariant solutions under certain groups of transformations for differential equations.This method not very well known and used is of great importance in the scientific community. By this approach it was possible to find several exactinvariant solutions for the Klein Gordon Equation uxx − utt = k(u). A particularcase, The Kolmogorov equation uxx − utt = k1u + k2un was considered.These equations appear in the study of relativistic and quantum physics. The general solutions found, could be used for future explorations on the study for other specific K(u) functions.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-12-01
dc.date.available.none.fl_str_mv 2019-11-22T18:49:14Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T18:49:14Z
dc.date.none.fl_str_mv 2012-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14449
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.8.16.3
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.8.16.3
url http://hdl.handle.net/10784/14449
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1706
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1706
dc.rights.eng.fl_str_mv Copyright (c) 2012 H H Ortíz Álvarez, F N Jiménez García, Abel Enrique Posso Agudelo
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2012 H H Ortíz Álvarez, F N Jiménez García, Abel Enrique Posso Agudelo
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 8, No 16 (2012)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/cc95d46a-b559-47ee-88d1-da9ecaa13b5e/download
https://repository.eafit.edu.co/bitstreams/ff61995f-ae25-4dc4-bb5e-ae0452b1085c/download
https://repository.eafit.edu.co/bitstreams/02d7e549-bf76-4428-9fc7-8c98ebc971c2/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
94c90cb3f1c8f0bb7ba2326e399059e9
9a2d5c95a59b25a3caa8d633c712ecb9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110255713353728