Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions
The problem of Kirsch published in 1898, is used as a basis for corroborating the relative precision of numerical methods developed in the mechanics of solids. For this reason, the solution of this problem is used to evaluate the accuracy of the Mfree numerical method with a function of form using t...
- Autores:
-
Realpe, Fabio H.
Ochoa, Yasser H.
Franco, Francisco
Díaz, Pedro J.
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/13179
- Acceso en línea:
- http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4641
http://hdl.handle.net/10784/13179
- Palabra clave:
- Mesh-free elements (Mfree)
Radial Point Interpolation Method (RPIM)
Radio Basis Functions Multi-quadratics (RBF)
Mfree (Elementos Libres de Malla)
RPIM (Método de interpolación de puntos radiales)
MQ (Multi-cuadráticas)
- Rights
- License
- Copyright (c) 2017 Fabio H Realpe, Yasser H Ochoa, Francisco Franco, Pedro J Díaz
id |
REPOEAFIT2_9ce455d0ff385a30599530def2cef7c1 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/13179 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions |
dc.title.spa.fl_str_mv |
Solución del problema de Kirsch mediante elementos libres de malla, utilizando funciones de interpolación de base radial |
title |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions |
spellingShingle |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions Mesh-free elements (Mfree) Radial Point Interpolation Method (RPIM) Radio Basis Functions Multi-quadratics (RBF) Mfree (Elementos Libres de Malla) RPIM (Método de interpolación de puntos radiales) MQ (Multi-cuadráticas) |
title_short |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions |
title_full |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions |
title_fullStr |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions |
title_full_unstemmed |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions |
title_sort |
Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation Functions |
dc.creator.fl_str_mv |
Realpe, Fabio H. Ochoa, Yasser H. Franco, Francisco Díaz, Pedro J. |
dc.contributor.author.none.fl_str_mv |
Realpe, Fabio H. Ochoa, Yasser H. Franco, Francisco Díaz, Pedro J. |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad del Cauca Universidad del Valle Universidad Industrial de Santander |
dc.subject.keyword.eng.fl_str_mv |
Mesh-free elements (Mfree) Radial Point Interpolation Method (RPIM) Radio Basis Functions Multi-quadratics (RBF) |
topic |
Mesh-free elements (Mfree) Radial Point Interpolation Method (RPIM) Radio Basis Functions Multi-quadratics (RBF) Mfree (Elementos Libres de Malla) RPIM (Método de interpolación de puntos radiales) MQ (Multi-cuadráticas) |
dc.subject.keyword.spa.fl_str_mv |
Mfree (Elementos Libres de Malla) RPIM (Método de interpolación de puntos radiales) MQ (Multi-cuadráticas) |
description |
The problem of Kirsch published in 1898, is used as a basis for corroborating the relative precision of numerical methods developed in the mechanics of solids. For this reason, the solution of this problem is used to evaluate the accuracy of the Mfree numerical method with a function of form using the radial points of interpolation, in the mesh-free numerical method. The radial points of interpolation method (RPIM) is an interpolation technique used to construct form functions with locally distributed nodes in a weak formulation that allows the representation of the problem as a system of equations. The most common type of functions are the polynomial functions or MQ radial basis functions (RBF), which was used for the stability it presents at the moment of solving the problem numerically. The most common type of functions are the polynomial functions or radial basis functions (RBF), which was used for the stability it presents at the moment of solving the problem numerically. To make the comparison we used the analytical solution given by Kirsch and the numerical solution developed in the present work, obtained an error of 0.00899%, which shows that the Mfree technique with radial bases of interpolation MQ are accurate and reliable when used as a numerical method of analysis. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-11-14 |
dc.date.available.none.fl_str_mv |
2018-11-16T16:28:58Z |
dc.date.accessioned.none.fl_str_mv |
2018-11-16T16:28:58Z |
dc.date.none.fl_str_mv |
2017-11-14 |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion article publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4641 http://hdl.handle.net/10784/13179 |
dc.identifier.doi.none.fl_str_mv |
10.17230/ingciencia.13.26.1 |
identifier_str_mv |
2256-4314 1794-9165 10.17230/ingciencia.13.26.1 |
url |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4641 http://hdl.handle.net/10784/13179 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4641 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2017 Fabio H Realpe, Yasser H Ochoa, Francisco Franco, Pedro J Díaz Attribution 4.0 International (CC BY 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2017 Fabio H Realpe, Yasser H Ochoa, Francisco Franco, Pedro J Díaz Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0 Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.eng.fl_str_mv |
Ingeniería y Ciencia; Vol 13 No 26 (2017); 11-38 |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 13 No 26 (2017); 11-38 |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/531794a0-cdc8-4a93-a623-abe0ba942e05/download https://repository.eafit.edu.co/bitstreams/8a572c2f-bd9c-45e9-8e0b-945bd21751f3/download https://repository.eafit.edu.co/bitstreams/730cb356-9a16-4076-88e9-2b7e99a33763/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 7e2a552db52b23c7e13e01ad1ff45463 d3f4224c39e23564e6a27433a295d2f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102397083320320 |
spelling |
2017-11-142018-11-16T16:28:58Z2017-11-142018-11-16T16:28:58Z2256-43141794-9165http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4641http://hdl.handle.net/10784/1317910.17230/ingciencia.13.26.1The problem of Kirsch published in 1898, is used as a basis for corroborating the relative precision of numerical methods developed in the mechanics of solids. For this reason, the solution of this problem is used to evaluate the accuracy of the Mfree numerical method with a function of form using the radial points of interpolation, in the mesh-free numerical method. The radial points of interpolation method (RPIM) is an interpolation technique used to construct form functions with locally distributed nodes in a weak formulation that allows the representation of the problem as a system of equations. The most common type of functions are the polynomial functions or MQ radial basis functions (RBF), which was used for the stability it presents at the moment of solving the problem numerically. The most common type of functions are the polynomial functions or radial basis functions (RBF), which was used for the stability it presents at the moment of solving the problem numerically. To make the comparison we used the analytical solution given by Kirsch and the numerical solution developed in the present work, obtained an error of 0.00899%, which shows that the Mfree technique with radial bases of interpolation MQ are accurate and reliable when used as a numerical method of analysis.El problema de Kirsch publicado en 1898, es utilizado como base para corroborar la precisión relativa de los métodos numéricos desarrollados en la mecánica de sólidos. Por esta razón se utiliza la solución de este problema para evaluar la precisión del método numérico Mfree con una función de forma utilizando los puntos radiales de interpolación, en el método numérico libre de malla. El método de puntos radiales de interpolación es una técnica de interpolación utilizada para construir funciones de forma con nodos distribuidos localmente en una formulación débil la cual permite representar el problema como un sistema de ecuaciones. El tipo de funciones más usuales son las funciones polinomiales o funciones de base radial MQ (RBF, radio basis functions), la cual fue utilizada por la estabilidad que presenta al momento de solucionar el problema numéricamente. Para hacer la comparación se usó la solución analítica dada por Kirsch y la solución numérica desarrollada en el presente trabajo, obtenido un error del 0.00899% lo que muestra que la técnica Mfree con bases radiales de interpolación MQ son precisas y confiables al momento de ser utilizadas como método numérico de análisis.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4641Copyright (c) 2017 Fabio H Realpe, Yasser H Ochoa, Francisco Franco, Pedro J DíazAttribution 4.0 International (CC BY 4.0)http://creativecommons.org/licenses/by/4.0Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 13 No 26 (2017); 11-38Ingeniería y Ciencia; Vol 13 No 26 (2017); 11-38Solving the Kirsch Problem with Mesh-free Elements Using Radial Base Interpolation FunctionsSolución del problema de Kirsch mediante elementos libres de malla, utilizando funciones de interpolación de base radialinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlepublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Mesh-free elements (Mfree)Radial Point Interpolation Method (RPIM)Radio Basis Functions Multi-quadratics (RBF)Mfree (Elementos Libres de Malla)RPIM (Método de interpolación de puntos radiales)MQ (Multi-cuadráticas)Realpe, Fabio H.ca8e71a9-9648-4dbf-a6ab-83e6b3721f9c-1Ochoa, Yasser H.80daebb7-fbdc-4b0f-80bb-eccfa60e0205-1Franco, Francisco1b42ac3e-1198-47c5-8a3c-5ac093092e39-1Díaz, Pedro J.71230b39-d829-45f3-9e45-b98a95bffe04-1Universidad del CaucaUniversidad del ValleUniversidad Industrial de SantanderIngeniería y Ciencia13261138ing.ciencTHUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/531794a0-cdc8-4a93-a623-abe0ba942e05/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL1.pdf1.pdfTexto completo PDFapplication/pdf1584779https://repository.eafit.edu.co/bitstreams/8a572c2f-bd9c-45e9-8e0b-945bd21751f3/download7e2a552db52b23c7e13e01ad1ff45463MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/730cb356-9a16-4076-88e9-2b7e99a33763/downloadd3f4224c39e23564e6a27433a295d2f9MD5310784/13179oai:repository.eafit.edu.co:10784/131792024-12-04 11:48:07.18http://creativecommons.org/licenses/by/4.0Copyright (c) 2017 Fabio H Realpe, Yasser H Ochoa, Francisco Franco, Pedro J Díazopen.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |