Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)

In 1991 M. Dotsenko presented a generalization of the Gage hypergeometric function denoted by 2Rτ1 (z), also establishing both its serial representation and its integral representation. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introd...

Full description

Autores:
Castillo Pérez, Jaime
Tipo de recurso:
Fecha de publicación:
2007
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/14544
Acceso en línea:
http://hdl.handle.net/10784/14544
Palabra clave:
Generalized Hypergeometric Function
Improper Integrals
Función Hipergeométrica Generalizada
Integrales Impropias
Rights
License
Copyright (c) 2007 Jaime Castillo Pérez
id REPOEAFIT2_98bc86525c0430aad3bae88bcd857c8f
oai_identifier_str oai:repository.eafit.edu.co:10784/14544
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2007-06-012019-11-22T19:14:44Z2007-06-012019-11-22T19:14:44Z2256-43141794-9165http://hdl.handle.net/10784/14544In 1991 M. Dotsenko presented a generalization of the Gage hypergeometric function denoted by 2Rτ1 (z), also establishing both its serial representation and its integral representation. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introducing a set of recurrence and differentiation formulas which simplify some complicated calculations. Kalla and collaborators studied this function and presented a new unified form of the Gamma function, then in 2006, Castillo and collaborators presented some simple representations for this function. In this paper some improper integrals are established with infinite integration limits that involve the generalization τ of the hypergeometric function of Gauss 2R1 (a, b; c; τ; z).En 1991 M. Dotsenko presentó una generalización de la función hipergeométrica de Gauss denotada por 2Rτ1 (z), estableciendo además tanto su representación en serie como también su representación integral. Es importante notar que en 1999 Nina Virchenko y luego, en el 2003, Leda Galué consideraron esta función, introduciendo un conjunto de fórmulas de recurrencia y de diferenciación las cuales permiten simplificar algunos cálculos complicados. Kalla y colaboradores estudiaron esta función y presentaron una nueva forma unificada de la función Gamma, luego en el 2006, Castillo y colaboradores presentaron algunas representaciones simples para ésta función. En este trabajo se establecen algunas integrales impropias con límites de integración infinitos que involucran a la generalización τ de la función hipergeométrica de Gauss 2R1(a, b; c; τ ; z).application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456Copyright (c) 2007 Jaime Castillo PérezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 3, No 5 (2007)Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)Algunas integrales impropias con límites de integración infinitos que involucran a la generalización τ de la función hipergeométrica de Gaussarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Generalized Hypergeometric FunctionImproper IntegralsFunción Hipergeométrica GeneralizadaIntegrales ImpropiasCastillo Pérez, JaimeUniversidad de la GuajiraIngeniería y Ciencia356785ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/22e4578a-1482-46f6-a156-2cd747e6e894/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument (3).pdfdocument (3).pdfTexto completo PDFapplication/pdf186254https://repository.eafit.edu.co/bitstreams/f61a6163-9acb-4cae-ba56-4a2a2467008a/downloadc467e78f65f619f3e506a11bcfcc5849MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/2a44f9a4-c646-4157-b355-6f480d6cfe96/downloada481b923b6c94977838307c7ce808dc9MD5310784/14544oai:repository.eafit.edu.co:10784/145442020-03-02 23:23:24.563open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
dc.title.spa.fl_str_mv Algunas integrales impropias con límites de integración infinitos que involucran a la generalización τ de la función hipergeométrica de Gauss
title Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
spellingShingle Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
Generalized Hypergeometric Function
Improper Integrals
Función Hipergeométrica Generalizada
Integrales Impropias
title_short Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
title_full Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
title_fullStr Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
title_full_unstemmed Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
title_sort Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
dc.creator.fl_str_mv Castillo Pérez, Jaime
dc.contributor.author.spa.fl_str_mv Castillo Pérez, Jaime
dc.contributor.affiliation.spa.fl_str_mv Universidad de la Guajira
dc.subject.keyword.eng.fl_str_mv Generalized Hypergeometric Function
Improper Integrals
topic Generalized Hypergeometric Function
Improper Integrals
Función Hipergeométrica Generalizada
Integrales Impropias
dc.subject.keyword.spa.fl_str_mv Función Hipergeométrica Generalizada
Integrales Impropias
description In 1991 M. Dotsenko presented a generalization of the Gage hypergeometric function denoted by 2Rτ1 (z), also establishing both its serial representation and its integral representation. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introducing a set of recurrence and differentiation formulas which simplify some complicated calculations. Kalla and collaborators studied this function and presented a new unified form of the Gamma function, then in 2006, Castillo and collaborators presented some simple representations for this function. In this paper some improper integrals are established with infinite integration limits that involve the generalization τ of the hypergeometric function of Gauss 2R1 (a, b; c; τ; z).
publishDate 2007
dc.date.issued.none.fl_str_mv 2007-06-01
dc.date.available.none.fl_str_mv 2019-11-22T19:14:44Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:14:44Z
dc.date.none.fl_str_mv 2007-06-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14544
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14544
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456
dc.rights.eng.fl_str_mv Copyright (c) 2007 Jaime Castillo Pérez
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2007 Jaime Castillo Pérez
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 3, No 5 (2007)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/22e4578a-1482-46f6-a156-2cd747e6e894/download
https://repository.eafit.edu.co/bitstreams/f61a6163-9acb-4cae-ba56-4a2a2467008a/download
https://repository.eafit.edu.co/bitstreams/2a44f9a4-c646-4157-b355-6f480d6cfe96/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
c467e78f65f619f3e506a11bcfcc5849
a481b923b6c94977838307c7ce808dc9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110361285033984