Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)
In 1991 M. Dotsenko presented a generalization of the Gage hypergeometric function denoted by 2Rτ1 (z), also establishing both its serial representation and its integral representation. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introd...
- Autores:
-
Castillo Pérez, Jaime
- Tipo de recurso:
- Fecha de publicación:
- 2007
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14544
- Acceso en línea:
- http://hdl.handle.net/10784/14544
- Palabra clave:
- Generalized Hypergeometric Function
Improper Integrals
Función Hipergeométrica Generalizada
Integrales Impropias
- Rights
- License
- Copyright (c) 2007 Jaime Castillo Pérez
id |
REPOEAFIT2_98bc86525c0430aad3bae88bcd857c8f |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14544 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2007-06-012019-11-22T19:14:44Z2007-06-012019-11-22T19:14:44Z2256-43141794-9165http://hdl.handle.net/10784/14544In 1991 M. Dotsenko presented a generalization of the Gage hypergeometric function denoted by 2Rτ1 (z), also establishing both its serial representation and its integral representation. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introducing a set of recurrence and differentiation formulas which simplify some complicated calculations. Kalla and collaborators studied this function and presented a new unified form of the Gamma function, then in 2006, Castillo and collaborators presented some simple representations for this function. In this paper some improper integrals are established with infinite integration limits that involve the generalization τ of the hypergeometric function of Gauss 2R1 (a, b; c; τ; z).En 1991 M. Dotsenko presentó una generalización de la función hipergeométrica de Gauss denotada por 2Rτ1 (z), estableciendo además tanto su representación en serie como también su representación integral. Es importante notar que en 1999 Nina Virchenko y luego, en el 2003, Leda Galué consideraron esta función, introduciendo un conjunto de fórmulas de recurrencia y de diferenciación las cuales permiten simplificar algunos cálculos complicados. Kalla y colaboradores estudiaron esta función y presentaron una nueva forma unificada de la función Gamma, luego en el 2006, Castillo y colaboradores presentaron algunas representaciones simples para ésta función. En este trabajo se establecen algunas integrales impropias con límites de integración infinitos que involucran a la generalización τ de la función hipergeométrica de Gauss 2R1(a, b; c; τ ; z).application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456Copyright (c) 2007 Jaime Castillo PérezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 3, No 5 (2007)Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z)Algunas integrales impropias con límites de integración infinitos que involucran a la generalización τ de la función hipergeométrica de Gaussarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Generalized Hypergeometric FunctionImproper IntegralsFunción Hipergeométrica GeneralizadaIntegrales ImpropiasCastillo Pérez, JaimeUniversidad de la GuajiraIngeniería y Ciencia356785ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/22e4578a-1482-46f6-a156-2cd747e6e894/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument (3).pdfdocument (3).pdfTexto completo PDFapplication/pdf186254https://repository.eafit.edu.co/bitstreams/f61a6163-9acb-4cae-ba56-4a2a2467008a/downloadc467e78f65f619f3e506a11bcfcc5849MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/2a44f9a4-c646-4157-b355-6f480d6cfe96/downloada481b923b6c94977838307c7ce808dc9MD5310784/14544oai:repository.eafit.edu.co:10784/145442020-03-02 23:23:24.563open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) |
dc.title.spa.fl_str_mv |
Algunas integrales impropias con límites de integración infinitos que involucran a la generalización τ de la función hipergeométrica de Gauss |
title |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) |
spellingShingle |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) Generalized Hypergeometric Function Improper Integrals Función Hipergeométrica Generalizada Integrales Impropias |
title_short |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) |
title_full |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) |
title_fullStr |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) |
title_full_unstemmed |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) |
title_sort |
Some improper integrals with integration infinity limit involving generalizad hypergeometric function 2R1(a, b; c; τ ; z) |
dc.creator.fl_str_mv |
Castillo Pérez, Jaime |
dc.contributor.author.spa.fl_str_mv |
Castillo Pérez, Jaime |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad de la Guajira |
dc.subject.keyword.eng.fl_str_mv |
Generalized Hypergeometric Function Improper Integrals |
topic |
Generalized Hypergeometric Function Improper Integrals Función Hipergeométrica Generalizada Integrales Impropias |
dc.subject.keyword.spa.fl_str_mv |
Función Hipergeométrica Generalizada Integrales Impropias |
description |
In 1991 M. Dotsenko presented a generalization of the Gage hypergeometric function denoted by 2Rτ1 (z), also establishing both its serial representation and its integral representation. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introducing a set of recurrence and differentiation formulas which simplify some complicated calculations. Kalla and collaborators studied this function and presented a new unified form of the Gamma function, then in 2006, Castillo and collaborators presented some simple representations for this function. In this paper some improper integrals are established with infinite integration limits that involve the generalization τ of the hypergeometric function of Gauss 2R1 (a, b; c; τ; z). |
publishDate |
2007 |
dc.date.issued.none.fl_str_mv |
2007-06-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T19:14:44Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T19:14:44Z |
dc.date.none.fl_str_mv |
2007-06-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14544 |
identifier_str_mv |
2256-4314 1794-9165 |
url |
http://hdl.handle.net/10784/14544 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2007 Jaime Castillo Pérez |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2007 Jaime Castillo Pérez Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 3, No 5 (2007) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/22e4578a-1482-46f6-a156-2cd747e6e894/download https://repository.eafit.edu.co/bitstreams/f61a6163-9acb-4cae-ba56-4a2a2467008a/download https://repository.eafit.edu.co/bitstreams/2a44f9a4-c646-4157-b355-6f480d6cfe96/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 c467e78f65f619f3e506a11bcfcc5849 a481b923b6c94977838307c7ce808dc9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110361285033984 |