Estimation of mechanical properties of rock using artificial intelligence
This article presents the way two artificial intelligence techniques, neural networks and genetic algorithms were combined, for the development of a computational tool used to estimate mechanical properties such as tensile strength, uniaxial compression resistance and resistance to triaxial compress...
- Autores:
-
Galvis, Laura Viviana
Augusto Ochoa, César
Arguello Fuentes, Henry
Carvajal Jiménez, Jenny Mabel
Calderón Carrillo, Zuly Himelda
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14465
- Acceso en línea:
- http://hdl.handle.net/10784/14465
- Palabra clave:
- Artificial Intelligence
Artificial Neural Network
Genetic Algorithm
Petrophysical Properties
Mechanical Properties
Inteligencia Artificial
Red Neuronal Artificial
Algoritmo Genético
Propiedades Petrofísicas
Propiedades Mecánicas
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_97e47a0dc9bc13d1b29c524a0fffa103 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14465 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2011-12-012019-11-22T18:55:37Z2011-12-012019-11-22T18:55:37Z2256-43141794-9165http://hdl.handle.net/10784/14465This article presents the way two artificial intelligence techniques, neural networks and genetic algorithms were combined, for the development of a computational tool used to estimate mechanical properties such as tensile strength, uniaxial compression resistance and resistance to triaxial compression in sandstones, from petrophysical properties using test data from the Rock Mechanics Laboratory of the Colombian Petroleum Institute - Ecopetrol SA as training data facilitating the design of non-destructive tests with a certain degree of confidence and leading to cost reduction.Este artículo presenta la forma como fueron combinadas dos técnicas de inteligencia artificial, redes neuronales y algoritmos genéticos, para el desarrollo de una herramienta computacional utilizada para la estimación de propiedades mecánicas tales como la resistencia a la tensión, la resistencia a la compresión uniaxial y la resistencia a la compresión triaxial en areniscas, a partir de propiedades petrofísicas utilizando datos de pruebas del Laboratorio de Mecánica de Rocas del Instituto Colombiano del Petróleo - Ecopetrol S.A. como datos de entrenamiento facilitando el diseño de ensayos no destructivos con cierto grado de confianza y dando lugar a una reducción de costos.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/430http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/430Copyright (c) 2011 Laura Viviana Galvis, César Augusto Ochoa, Henry Arguello Fuentes, Jenny Mabel Carvajal Jiménez, Zuly Himelda Calderón CarrilloAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 7, No 14 (2011)Estimation of mechanical properties of rock using artificial intelligenceEstimación de propiedades mecánicas de roca utilizando inteligencia artificialarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artificial IntelligenceArtificial Neural NetworkGenetic AlgorithmPetrophysical PropertiesMechanical PropertiesInteligencia ArtificialRed Neuronal ArtificialAlgoritmo GenéticoPropiedades PetrofísicasPropiedades MecánicasGalvis, Laura VivianaAugusto Ochoa, CésarArguello Fuentes, HenryCarvajal Jiménez, Jenny MabelCalderón Carrillo, Zuly HimeldaUniversidad Industrial de Santander (UIS)Ingeniería y Ciencia71483103ing.cienc.ORIGINAL5.pdf5.pdfTexto completo PDFapplication/pdf3575593https://repository.eafit.edu.co/bitstreams/05a93f91-171a-45e6-9096-d812df8b66d4/download3b770aef81476351bc6faa391423deb9MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/1eb367df-45af-4ac2-b2f7-f8e70df5cc90/download00fbf29b2ac04a39dfa8a5d27c2f107aMD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/46276e92-6fb5-4e37-bd85-3c2ce34a860c/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/14465oai:repository.eafit.edu.co:10784/144652020-03-02 22:10:54.736open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Estimation of mechanical properties of rock using artificial intelligence |
dc.title.spa.fl_str_mv |
Estimación de propiedades mecánicas de roca utilizando inteligencia artificial |
title |
Estimation of mechanical properties of rock using artificial intelligence |
spellingShingle |
Estimation of mechanical properties of rock using artificial intelligence Artificial Intelligence Artificial Neural Network Genetic Algorithm Petrophysical Properties Mechanical Properties Inteligencia Artificial Red Neuronal Artificial Algoritmo Genético Propiedades Petrofísicas Propiedades Mecánicas |
title_short |
Estimation of mechanical properties of rock using artificial intelligence |
title_full |
Estimation of mechanical properties of rock using artificial intelligence |
title_fullStr |
Estimation of mechanical properties of rock using artificial intelligence |
title_full_unstemmed |
Estimation of mechanical properties of rock using artificial intelligence |
title_sort |
Estimation of mechanical properties of rock using artificial intelligence |
dc.creator.fl_str_mv |
Galvis, Laura Viviana Augusto Ochoa, César Arguello Fuentes, Henry Carvajal Jiménez, Jenny Mabel Calderón Carrillo, Zuly Himelda |
dc.contributor.author.spa.fl_str_mv |
Galvis, Laura Viviana Augusto Ochoa, César Arguello Fuentes, Henry Carvajal Jiménez, Jenny Mabel Calderón Carrillo, Zuly Himelda |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Industrial de Santander (UIS) |
dc.subject.keyword.eng.fl_str_mv |
Artificial Intelligence Artificial Neural Network Genetic Algorithm Petrophysical Properties Mechanical Properties |
topic |
Artificial Intelligence Artificial Neural Network Genetic Algorithm Petrophysical Properties Mechanical Properties Inteligencia Artificial Red Neuronal Artificial Algoritmo Genético Propiedades Petrofísicas Propiedades Mecánicas |
dc.subject.keyword.spa.fl_str_mv |
Inteligencia Artificial Red Neuronal Artificial Algoritmo Genético Propiedades Petrofísicas Propiedades Mecánicas |
description |
This article presents the way two artificial intelligence techniques, neural networks and genetic algorithms were combined, for the development of a computational tool used to estimate mechanical properties such as tensile strength, uniaxial compression resistance and resistance to triaxial compression in sandstones, from petrophysical properties using test data from the Rock Mechanics Laboratory of the Colombian Petroleum Institute - Ecopetrol SA as training data facilitating the design of non-destructive tests with a certain degree of confidence and leading to cost reduction. |
publishDate |
2011 |
dc.date.issued.none.fl_str_mv |
2011-12-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T18:55:37Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T18:55:37Z |
dc.date.none.fl_str_mv |
2011-12-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14465 |
identifier_str_mv |
2256-4314 1794-9165 |
url |
http://hdl.handle.net/10784/14465 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/430 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/430 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 7, No 14 (2011) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/05a93f91-171a-45e6-9096-d812df8b66d4/download https://repository.eafit.edu.co/bitstreams/1eb367df-45af-4ac2-b2f7-f8e70df5cc90/download https://repository.eafit.edu.co/bitstreams/46276e92-6fb5-4e37-bd85-3c2ce34a860c/download |
bitstream.checksum.fl_str_mv |
3b770aef81476351bc6faa391423deb9 00fbf29b2ac04a39dfa8a5d27c2f107a da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110217532604416 |