Uncertainty in Electricity Markets from a seminonparametric Approach
The spot price of electricity is highly skewed and heavy-tailed, as a result of the interaction of different variables that affect that market. Such characteristics impact the design of power plants with different technologies, fuel prices, and energy demand. This paper introduces the semi-nonparame...
- Autores:
-
Trespalacios, Alfredo
Cortés, Lina M.
Perote, Javier
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/13600
- Acceso en línea:
- http://hdl.handle.net/10784/13600
- Palabra clave:
- Electricity market
SNP modeling
Risk management
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_9154d3fc6f0b8db20cf6dc73965e2964 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/13600 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2019-06-10T15:34:56Z2019-06-042019-06-10T15:34:56Zhttp://hdl.handle.net/10784/13600C14C22C53L94L98Q2The spot price of electricity is highly skewed and heavy-tailed, as a result of the interaction of different variables that affect that market. Such characteristics impact the design of power plants with different technologies, fuel prices, and energy demand. This paper introduces the semi-nonparametric (SNP) approach to describe the uncertainty of different variables in an electricity market, reducing the limitations that normality and parametric density functions impose. The selection of probability density functions is achieved in terms of a finite Gram– Charlier expansion fitted by the maximum likelihood criterion. The study case is the Colombian electricity market, where the SNP distribution outperforms the normal distribution for spot price, national energy demand, the climate index ONI, and the series of hydrologic inflows of the system and some rivers. The results show that risk analysis in electricity markets requires the measurement of skewness, kurtosis, and high-order moments. The flexible methodology in our study has directly applications for implementing policies on electricity markets that improve the sustainability indicators of different systems. The particular characteristics of the series under analysis should be considered as a starting point for risk analysis and portfolio choice.spaUniversidad EAFITEscuela de Economía y FinanzasUncertainty in Electricity Markets from a seminonparametric ApproachworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Electricity marketSNP modelingRisk managementlcortesd@eafit.edu.coTrespalacios, AlfredoCortés, Lina M.Perote, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/2dee3a18-6aef-46ca-a6f2-707b53625592/download76025f86b095439b7ac65b367055d40cMD51ORIGINALWP-2019-05-Alfredo Trespalacios.pdfWP-2019-05-Alfredo Trespalacios.pdfapplication/pdf2462721https://repository.eafit.edu.co/bitstreams/3be84471-0e9e-4343-a6d3-8cb199865f18/download10ece79e384da76ff2ebbe455cc1d2efMD5210784/13600oai:repository.eafit.edu.co:10784/136002024-03-05 14:06:14.289open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Uncertainty in Electricity Markets from a seminonparametric Approach |
title |
Uncertainty in Electricity Markets from a seminonparametric Approach |
spellingShingle |
Uncertainty in Electricity Markets from a seminonparametric Approach Electricity market SNP modeling Risk management |
title_short |
Uncertainty in Electricity Markets from a seminonparametric Approach |
title_full |
Uncertainty in Electricity Markets from a seminonparametric Approach |
title_fullStr |
Uncertainty in Electricity Markets from a seminonparametric Approach |
title_full_unstemmed |
Uncertainty in Electricity Markets from a seminonparametric Approach |
title_sort |
Uncertainty in Electricity Markets from a seminonparametric Approach |
dc.creator.fl_str_mv |
Trespalacios, Alfredo Cortés, Lina M. Perote, Javier |
dc.contributor.eafitauthor.none.fl_str_mv |
lcortesd@eafit.edu.co |
dc.contributor.author.none.fl_str_mv |
Trespalacios, Alfredo Cortés, Lina M. Perote, Javier |
dc.subject.keyword.spa.fl_str_mv |
Electricity market SNP modeling Risk management |
topic |
Electricity market SNP modeling Risk management |
description |
The spot price of electricity is highly skewed and heavy-tailed, as a result of the interaction of different variables that affect that market. Such characteristics impact the design of power plants with different technologies, fuel prices, and energy demand. This paper introduces the semi-nonparametric (SNP) approach to describe the uncertainty of different variables in an electricity market, reducing the limitations that normality and parametric density functions impose. The selection of probability density functions is achieved in terms of a finite Gram– Charlier expansion fitted by the maximum likelihood criterion. The study case is the Colombian electricity market, where the SNP distribution outperforms the normal distribution for spot price, national energy demand, the climate index ONI, and the series of hydrologic inflows of the system and some rivers. The results show that risk analysis in electricity markets requires the measurement of skewness, kurtosis, and high-order moments. The flexible methodology in our study has directly applications for implementing policies on electricity markets that improve the sustainability indicators of different systems. The particular characteristics of the series under analysis should be considered as a starting point for risk analysis and portfolio choice. |
publishDate |
2019 |
dc.date.available.none.fl_str_mv |
2019-06-10T15:34:56Z |
dc.date.issued.none.fl_str_mv |
2019-06-04 |
dc.date.accessioned.none.fl_str_mv |
2019-06-10T15:34:56Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/13600 |
dc.identifier.jel.none.fl_str_mv |
C14 C22 C53 L94 L98 Q2 |
url |
http://hdl.handle.net/10784/13600 |
identifier_str_mv |
C14 C22 C53 L94 L98 Q2 |
dc.language.iso.eng.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/2dee3a18-6aef-46ca-a6f2-707b53625592/download https://repository.eafit.edu.co/bitstreams/3be84471-0e9e-4343-a6d3-8cb199865f18/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 10ece79e384da76ff2ebbe455cc1d2ef |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110267929264128 |