Uncertainty in Electricity Markets from a seminonparametric Approach

The spot price of electricity is highly skewed and heavy-tailed, as a result of the interaction of different variables that affect that market. Such characteristics impact the design of power plants with different technologies, fuel prices, and energy demand. This paper introduces the semi-nonparame...

Full description

Autores:
Trespalacios, Alfredo
Cortés, Lina M.
Perote, Javier
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/13600
Acceso en línea:
http://hdl.handle.net/10784/13600
Palabra clave:
Electricity market
SNP modeling
Risk management
Rights
License
Acceso abierto
id REPOEAFIT2_9154d3fc6f0b8db20cf6dc73965e2964
oai_identifier_str oai:repository.eafit.edu.co:10784/13600
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2019-06-10T15:34:56Z2019-06-042019-06-10T15:34:56Zhttp://hdl.handle.net/10784/13600C14C22C53L94L98Q2The spot price of electricity is highly skewed and heavy-tailed, as a result of the interaction of different variables that affect that market. Such characteristics impact the design of power plants with different technologies, fuel prices, and energy demand. This paper introduces the semi-nonparametric (SNP) approach to describe the uncertainty of different variables in an electricity market, reducing the limitations that normality and parametric density functions impose. The selection of probability density functions is achieved in terms of a finite Gram– Charlier expansion fitted by the maximum likelihood criterion. The study case is the Colombian electricity market, where the SNP distribution outperforms the normal distribution for spot price, national energy demand, the climate index ONI, and the series of hydrologic inflows of the system and some rivers. The results show that risk analysis in electricity markets requires the measurement of skewness, kurtosis, and high-order moments. The flexible methodology in our study has directly applications for implementing policies on electricity markets that improve the sustainability indicators of different systems. The particular characteristics of the series under analysis should be considered as a starting point for risk analysis and portfolio choice.spaUniversidad EAFITEscuela de Economía y FinanzasUncertainty in Electricity Markets from a seminonparametric ApproachworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Electricity marketSNP modelingRisk managementlcortesd@eafit.edu.coTrespalacios, AlfredoCortés, Lina M.Perote, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/2dee3a18-6aef-46ca-a6f2-707b53625592/download76025f86b095439b7ac65b367055d40cMD51ORIGINALWP-2019-05-Alfredo Trespalacios.pdfWP-2019-05-Alfredo Trespalacios.pdfapplication/pdf2462721https://repository.eafit.edu.co/bitstreams/3be84471-0e9e-4343-a6d3-8cb199865f18/download10ece79e384da76ff2ebbe455cc1d2efMD5210784/13600oai:repository.eafit.edu.co:10784/136002024-03-05 14:06:14.289open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Uncertainty in Electricity Markets from a seminonparametric Approach
title Uncertainty in Electricity Markets from a seminonparametric Approach
spellingShingle Uncertainty in Electricity Markets from a seminonparametric Approach
Electricity market
SNP modeling
Risk management
title_short Uncertainty in Electricity Markets from a seminonparametric Approach
title_full Uncertainty in Electricity Markets from a seminonparametric Approach
title_fullStr Uncertainty in Electricity Markets from a seminonparametric Approach
title_full_unstemmed Uncertainty in Electricity Markets from a seminonparametric Approach
title_sort Uncertainty in Electricity Markets from a seminonparametric Approach
dc.creator.fl_str_mv Trespalacios, Alfredo
Cortés, Lina M.
Perote, Javier
dc.contributor.eafitauthor.none.fl_str_mv lcortesd@eafit.edu.co
dc.contributor.author.none.fl_str_mv Trespalacios, Alfredo
Cortés, Lina M.
Perote, Javier
dc.subject.keyword.spa.fl_str_mv Electricity market
SNP modeling
Risk management
topic Electricity market
SNP modeling
Risk management
description The spot price of electricity is highly skewed and heavy-tailed, as a result of the interaction of different variables that affect that market. Such characteristics impact the design of power plants with different technologies, fuel prices, and energy demand. This paper introduces the semi-nonparametric (SNP) approach to describe the uncertainty of different variables in an electricity market, reducing the limitations that normality and parametric density functions impose. The selection of probability density functions is achieved in terms of a finite Gram– Charlier expansion fitted by the maximum likelihood criterion. The study case is the Colombian electricity market, where the SNP distribution outperforms the normal distribution for spot price, national energy demand, the climate index ONI, and the series of hydrologic inflows of the system and some rivers. The results show that risk analysis in electricity markets requires the measurement of skewness, kurtosis, and high-order moments. The flexible methodology in our study has directly applications for implementing policies on electricity markets that improve the sustainability indicators of different systems. The particular characteristics of the series under analysis should be considered as a starting point for risk analysis and portfolio choice.
publishDate 2019
dc.date.available.none.fl_str_mv 2019-06-10T15:34:56Z
dc.date.issued.none.fl_str_mv 2019-06-04
dc.date.accessioned.none.fl_str_mv 2019-06-10T15:34:56Z
dc.type.eng.fl_str_mv workingPaper
info:eu-repo/semantics/workingPaper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.local.spa.fl_str_mv Documento de trabajo de investigación
dc.type.hasVersion.eng.fl_str_mv draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/13600
dc.identifier.jel.none.fl_str_mv C14
C22
C53
L94
L98
Q2
url http://hdl.handle.net/10784/13600
identifier_str_mv C14
C22
C53
L94
L98
Q2
dc.language.iso.eng.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.department.spa.fl_str_mv Escuela de Economía y Finanzas
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/2dee3a18-6aef-46ca-a6f2-707b53625592/download
https://repository.eafit.edu.co/bitstreams/3be84471-0e9e-4343-a6d3-8cb199865f18/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
10ece79e384da76ff2ebbe455cc1d2ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110267929264128