Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach

Textile vascular grafts are biomedical devices that serve as partial replacement of damaged arterial vessels, prevent aneurysms rupture and restore normal blood flow -- It is believed that the success of a textile vascular graft, in the healing process after implantation, is due to the porous micro-...

Full description

Autores:
Valencia Cardona, Raúl Adolfo
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/11482
Acceso en línea:
http://hdl.handle.net/10784/11482
Palabra clave:
Medicina regenerativa
Ingeniería de tejidos
Angiografía por resonancia magnética
Dinámica de Fluídos Computacionales (CFD)
MÉTODO DE ELEMENTOS FINITOS
ANASTOMOSIS ARTERIOVENOSA
PRÓTESIS DE VASOS SANGUÍNEOS
ANEURISMAS
MATERIALES BIOMÉDICOS
POLÍMEROS EN MEDICINA
CONSERVACIÓN DE TEJIDOS
DINÁMICA DE FLUIDOS
MATERIALES POROSOS
MODELOS MATEMÁTICOS
MOVILIDAD CELULAR
Finite element method
Arteriovenous anastomosis
Blood-vessels prosthesis
Aneurysms
Biomedical materials
Polymers in medicine
Tissues - Preservation
Fluid dynamics
Porous materials
Mathematical models
Cells - Motility
Rights
License
Acceso abierto
id REPOEAFIT2_90edbba96ae25bb76a9d616cec9c1f1f
oai_identifier_str oai:repository.eafit.edu.co:10784/11482
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.spa.fl_str_mv Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
title Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
spellingShingle Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
Medicina regenerativa
Ingeniería de tejidos
Angiografía por resonancia magnética
Dinámica de Fluídos Computacionales (CFD)
MÉTODO DE ELEMENTOS FINITOS
ANASTOMOSIS ARTERIOVENOSA
PRÓTESIS DE VASOS SANGUÍNEOS
ANEURISMAS
MATERIALES BIOMÉDICOS
POLÍMEROS EN MEDICINA
CONSERVACIÓN DE TEJIDOS
DINÁMICA DE FLUIDOS
MATERIALES POROSOS
MODELOS MATEMÁTICOS
MOVILIDAD CELULAR
Finite element method
Arteriovenous anastomosis
Blood-vessels prosthesis
Aneurysms
Biomedical materials
Polymers in medicine
Tissues - Preservation
Fluid dynamics
Porous materials
Mathematical models
Cells - Motility
title_short Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
title_full Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
title_fullStr Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
title_full_unstemmed Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
title_sort Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
dc.creator.fl_str_mv Valencia Cardona, Raúl Adolfo
dc.contributor.advisor.none.fl_str_mv García Ruíz, Manuel Julio
Bustamante Osorno, John
dc.contributor.author.none.fl_str_mv Valencia Cardona, Raúl Adolfo
dc.subject.spa.fl_str_mv Medicina regenerativa
Ingeniería de tejidos
Angiografía por resonancia magnética
Dinámica de Fluídos Computacionales (CFD)
topic Medicina regenerativa
Ingeniería de tejidos
Angiografía por resonancia magnética
Dinámica de Fluídos Computacionales (CFD)
MÉTODO DE ELEMENTOS FINITOS
ANASTOMOSIS ARTERIOVENOSA
PRÓTESIS DE VASOS SANGUÍNEOS
ANEURISMAS
MATERIALES BIOMÉDICOS
POLÍMEROS EN MEDICINA
CONSERVACIÓN DE TEJIDOS
DINÁMICA DE FLUIDOS
MATERIALES POROSOS
MODELOS MATEMÁTICOS
MOVILIDAD CELULAR
Finite element method
Arteriovenous anastomosis
Blood-vessels prosthesis
Aneurysms
Biomedical materials
Polymers in medicine
Tissues - Preservation
Fluid dynamics
Porous materials
Mathematical models
Cells - Motility
dc.subject.lemb.spa.fl_str_mv MÉTODO DE ELEMENTOS FINITOS
ANASTOMOSIS ARTERIOVENOSA
PRÓTESIS DE VASOS SANGUÍNEOS
ANEURISMAS
MATERIALES BIOMÉDICOS
POLÍMEROS EN MEDICINA
CONSERVACIÓN DE TEJIDOS
DINÁMICA DE FLUIDOS
MATERIALES POROSOS
MODELOS MATEMÁTICOS
MOVILIDAD CELULAR
dc.subject.keyword.spa.fl_str_mv Finite element method
Arteriovenous anastomosis
Blood-vessels prosthesis
Aneurysms
Biomedical materials
Polymers in medicine
Tissues - Preservation
Fluid dynamics
Porous materials
Mathematical models
Cells - Motility
description Textile vascular grafts are biomedical devices that serve as partial replacement of damaged arterial vessels, prevent aneurysms rupture and restore normal blood flow -- It is believed that the success of a textile vascular graft, in the healing process after implantation, is due to the porous micro-structure of the wall -- Among the key properties that take part in the tissue repair process are the type of fabric and degree of porosity and permeability, defining the ability of a well-controlled environment for the neovascularization, nutrient supply, and cellular transport -- Although the transport of fluids through textiles is of great technical interest in biomedical applications, little is known about predicting the micro-flow pattern and the transport and deposition of individual platelets, related with the graft occlusion -- Often, this information is difficult to obtain experimentally both in vivo and in vitro, representing a great deal of research efforts -- The aim of this work is to investigate how the type of fabric, permeability and porosity affect both the local fluid dynamics at several scales and the fluid-particle interaction among platelets in textile grafts with an anastomosis of end-to-end configuration -- Two types of samples were analyzed: woven and electrospun, this last one has been manufactured -- This study involves both experimental and computational tests -- The experimental tests were performed to characterize the permeability and porosity under static conditions -- The computational tests are based on a multiscale approach where the fluid flow was solved with the Finite Element Method and the discrete particles were solved with the Molecular Dynamic Method -- The fluid-particle interaction was accomplished in one-, two-, and four-ways, where the blood was considered as a suspension of platelets in plasma -- The textile wall was considered as a porous media with two scales of length: straight tubular structure with porous walls for the macro-domain and representative unit cells of fabric for the micro-domain. Additionally, it presents the implementation of a numerical case that includes one of the main applications of textile vascular grafts to repair Abdominal Aortic Aneurysms (AAA) -- The results have shown that the type of fabric in textile vascular grafts and the degree of porosity and permeability affect the local fluid dynamics and the level of penetration of platelet particles through the graft wall at several length scales, thus indicating their importance as design parameters -- It was found that the permeability is strongly depends on the micro-structure of the fabric, changing the local fluid dynamics and the time of residence of platelets inside the wall -- Moreover, the porous walls cause deviations from Poiseuille flow due to leakage flow through the wall from a macroscopic viewpoint -- Lastly, it was possible to observe that the textile wall with different porosities, acting like a barrier between the blood and an aneurysmal zone, affects the flow pattern, the number of platelets adhered to the artificial surface and the time of residence of platelets into the aneurysmal zone -- In conclusion, predicting the flow pattern and the mobility of blood cells through the textile wall before the graft is manufactured, the development of new textile grafts can be improved
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.available.none.fl_str_mv 2017-06-21T15:21:46Z
dc.date.accessioned.none.fl_str_mv 2017-06-21T15:21:46Z
dc.type.eng.fl_str_mv doctoralThesis
info:eu-repo/semantics/doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.local.spa.fl_str_mv Tesis Doctoral
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/11482
dc.identifier.local.none.fl_str_mv 660.2842CD V152C
url http://hdl.handle.net/10784/11482
identifier_str_mv 660.2842CD V152C
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
dc.publisher.department.spa.fl_str_mv Escuela de Ingeniería
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/e3cbd837-fcf9-41ff-9385-1a022d69c5ce/download
https://repository.eafit.edu.co/bitstreams/89a97f8c-5586-4748-9c13-40d857e00c92/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
62eb55f2f79cebd07724616161142bae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110164364558336
spelling García Ruíz, Manuel JulioBustamante Osorno, JohnValencia Cardona, Raúl AdolfoDoctor in Engineeringrvalenc2@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2017-06-21T15:21:46Z20152017-06-21T15:21:46Zhttp://hdl.handle.net/10784/11482660.2842CD V152CTextile vascular grafts are biomedical devices that serve as partial replacement of damaged arterial vessels, prevent aneurysms rupture and restore normal blood flow -- It is believed that the success of a textile vascular graft, in the healing process after implantation, is due to the porous micro-structure of the wall -- Among the key properties that take part in the tissue repair process are the type of fabric and degree of porosity and permeability, defining the ability of a well-controlled environment for the neovascularization, nutrient supply, and cellular transport -- Although the transport of fluids through textiles is of great technical interest in biomedical applications, little is known about predicting the micro-flow pattern and the transport and deposition of individual platelets, related with the graft occlusion -- Often, this information is difficult to obtain experimentally both in vivo and in vitro, representing a great deal of research efforts -- The aim of this work is to investigate how the type of fabric, permeability and porosity affect both the local fluid dynamics at several scales and the fluid-particle interaction among platelets in textile grafts with an anastomosis of end-to-end configuration -- Two types of samples were analyzed: woven and electrospun, this last one has been manufactured -- This study involves both experimental and computational tests -- The experimental tests were performed to characterize the permeability and porosity under static conditions -- The computational tests are based on a multiscale approach where the fluid flow was solved with the Finite Element Method and the discrete particles were solved with the Molecular Dynamic Method -- The fluid-particle interaction was accomplished in one-, two-, and four-ways, where the blood was considered as a suspension of platelets in plasma -- The textile wall was considered as a porous media with two scales of length: straight tubular structure with porous walls for the macro-domain and representative unit cells of fabric for the micro-domain. Additionally, it presents the implementation of a numerical case that includes one of the main applications of textile vascular grafts to repair Abdominal Aortic Aneurysms (AAA) -- The results have shown that the type of fabric in textile vascular grafts and the degree of porosity and permeability affect the local fluid dynamics and the level of penetration of platelet particles through the graft wall at several length scales, thus indicating their importance as design parameters -- It was found that the permeability is strongly depends on the micro-structure of the fabric, changing the local fluid dynamics and the time of residence of platelets inside the wall -- Moreover, the porous walls cause deviations from Poiseuille flow due to leakage flow through the wall from a macroscopic viewpoint -- Lastly, it was possible to observe that the textile wall with different porosities, acting like a barrier between the blood and an aneurysmal zone, affects the flow pattern, the number of platelets adhered to the artificial surface and the time of residence of platelets into the aneurysmal zone -- In conclusion, predicting the flow pattern and the mobility of blood cells through the textile wall before the graft is manufactured, the development of new textile grafts can be improvedspaUniversidad EAFITDoctorado en IngenieríaEscuela de IngenieríaMedicina regenerativaIngeniería de tejidosAngiografía por resonancia magnéticaDinámica de Fluídos Computacionales (CFD)MÉTODO DE ELEMENTOS FINITOSANASTOMOSIS ARTERIOVENOSAPRÓTESIS DE VASOS SANGUÍNEOSANEURISMASMATERIALES BIOMÉDICOSPOLÍMEROS EN MEDICINACONSERVACIÓN DE TEJIDOSDINÁMICA DE FLUIDOSMATERIALES POROSOSMODELOS MATEMÁTICOSMOVILIDAD CELULARFinite element methodArteriovenous anastomosisBlood-vessels prosthesisAneurysmsBiomedical materialsPolymers in medicineTissues - PreservationFluid dynamicsPorous materialsMathematical modelsCells - MotilityComputational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale ApproachdoctoralThesisinfo:eu-repo/semantics/doctoralThesisTesis DoctoralacceptedVersionhttp://purl.org/coar/resource_type/c_db06Acceso abiertohttp://purl.org/coar/access_right/c_abf2LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/e3cbd837-fcf9-41ff-9385-1a022d69c5ce/download76025f86b095439b7ac65b367055d40cMD51ORIGINALRaulAdolfo_ValenciaCardona_2015.pdfRaulAdolfo_ValenciaCardona_2015.pdfTexto completoapplication/pdf8658043https://repository.eafit.edu.co/bitstreams/89a97f8c-5586-4748-9c13-40d857e00c92/download62eb55f2f79cebd07724616161142baeMD5210784/11482oai:repository.eafit.edu.co:10784/114822020-03-25 12:16:30.075open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK