Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach
Textile vascular grafts are biomedical devices that serve as partial replacement of damaged arterial vessels, prevent aneurysms rupture and restore normal blood flow -- It is believed that the success of a textile vascular graft, in the healing process after implantation, is due to the porous micro-...
- Autores:
-
Valencia Cardona, Raúl Adolfo
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/11482
- Acceso en línea:
- http://hdl.handle.net/10784/11482
- Palabra clave:
- Medicina regenerativa
Ingeniería de tejidos
Angiografía por resonancia magnética
Dinámica de Fluídos Computacionales (CFD)
MÉTODO DE ELEMENTOS FINITOS
ANASTOMOSIS ARTERIOVENOSA
PRÓTESIS DE VASOS SANGUÍNEOS
ANEURISMAS
MATERIALES BIOMÉDICOS
POLÍMEROS EN MEDICINA
CONSERVACIÓN DE TEJIDOS
DINÁMICA DE FLUIDOS
MATERIALES POROSOS
MODELOS MATEMÁTICOS
MOVILIDAD CELULAR
Finite element method
Arteriovenous anastomosis
Blood-vessels prosthesis
Aneurysms
Biomedical materials
Polymers in medicine
Tissues - Preservation
Fluid dynamics
Porous materials
Mathematical models
Cells - Motility
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_90edbba96ae25bb76a9d616cec9c1f1f |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/11482 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach |
title |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach |
spellingShingle |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach Medicina regenerativa Ingeniería de tejidos Angiografía por resonancia magnética Dinámica de Fluídos Computacionales (CFD) MÉTODO DE ELEMENTOS FINITOS ANASTOMOSIS ARTERIOVENOSA PRÓTESIS DE VASOS SANGUÍNEOS ANEURISMAS MATERIALES BIOMÉDICOS POLÍMEROS EN MEDICINA CONSERVACIÓN DE TEJIDOS DINÁMICA DE FLUIDOS MATERIALES POROSOS MODELOS MATEMÁTICOS MOVILIDAD CELULAR Finite element method Arteriovenous anastomosis Blood-vessels prosthesis Aneurysms Biomedical materials Polymers in medicine Tissues - Preservation Fluid dynamics Porous materials Mathematical models Cells - Motility |
title_short |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach |
title_full |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach |
title_fullStr |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach |
title_full_unstemmed |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach |
title_sort |
Computational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale Approach |
dc.creator.fl_str_mv |
Valencia Cardona, Raúl Adolfo |
dc.contributor.advisor.none.fl_str_mv |
García Ruíz, Manuel Julio Bustamante Osorno, John |
dc.contributor.author.none.fl_str_mv |
Valencia Cardona, Raúl Adolfo |
dc.subject.spa.fl_str_mv |
Medicina regenerativa Ingeniería de tejidos Angiografía por resonancia magnética Dinámica de Fluídos Computacionales (CFD) |
topic |
Medicina regenerativa Ingeniería de tejidos Angiografía por resonancia magnética Dinámica de Fluídos Computacionales (CFD) MÉTODO DE ELEMENTOS FINITOS ANASTOMOSIS ARTERIOVENOSA PRÓTESIS DE VASOS SANGUÍNEOS ANEURISMAS MATERIALES BIOMÉDICOS POLÍMEROS EN MEDICINA CONSERVACIÓN DE TEJIDOS DINÁMICA DE FLUIDOS MATERIALES POROSOS MODELOS MATEMÁTICOS MOVILIDAD CELULAR Finite element method Arteriovenous anastomosis Blood-vessels prosthesis Aneurysms Biomedical materials Polymers in medicine Tissues - Preservation Fluid dynamics Porous materials Mathematical models Cells - Motility |
dc.subject.lemb.spa.fl_str_mv |
MÉTODO DE ELEMENTOS FINITOS ANASTOMOSIS ARTERIOVENOSA PRÓTESIS DE VASOS SANGUÍNEOS ANEURISMAS MATERIALES BIOMÉDICOS POLÍMEROS EN MEDICINA CONSERVACIÓN DE TEJIDOS DINÁMICA DE FLUIDOS MATERIALES POROSOS MODELOS MATEMÁTICOS MOVILIDAD CELULAR |
dc.subject.keyword.spa.fl_str_mv |
Finite element method Arteriovenous anastomosis Blood-vessels prosthesis Aneurysms Biomedical materials Polymers in medicine Tissues - Preservation Fluid dynamics Porous materials Mathematical models Cells - Motility |
description |
Textile vascular grafts are biomedical devices that serve as partial replacement of damaged arterial vessels, prevent aneurysms rupture and restore normal blood flow -- It is believed that the success of a textile vascular graft, in the healing process after implantation, is due to the porous micro-structure of the wall -- Among the key properties that take part in the tissue repair process are the type of fabric and degree of porosity and permeability, defining the ability of a well-controlled environment for the neovascularization, nutrient supply, and cellular transport -- Although the transport of fluids through textiles is of great technical interest in biomedical applications, little is known about predicting the micro-flow pattern and the transport and deposition of individual platelets, related with the graft occlusion -- Often, this information is difficult to obtain experimentally both in vivo and in vitro, representing a great deal of research efforts -- The aim of this work is to investigate how the type of fabric, permeability and porosity affect both the local fluid dynamics at several scales and the fluid-particle interaction among platelets in textile grafts with an anastomosis of end-to-end configuration -- Two types of samples were analyzed: woven and electrospun, this last one has been manufactured -- This study involves both experimental and computational tests -- The experimental tests were performed to characterize the permeability and porosity under static conditions -- The computational tests are based on a multiscale approach where the fluid flow was solved with the Finite Element Method and the discrete particles were solved with the Molecular Dynamic Method -- The fluid-particle interaction was accomplished in one-, two-, and four-ways, where the blood was considered as a suspension of platelets in plasma -- The textile wall was considered as a porous media with two scales of length: straight tubular structure with porous walls for the macro-domain and representative unit cells of fabric for the micro-domain. Additionally, it presents the implementation of a numerical case that includes one of the main applications of textile vascular grafts to repair Abdominal Aortic Aneurysms (AAA) -- The results have shown that the type of fabric in textile vascular grafts and the degree of porosity and permeability affect the local fluid dynamics and the level of penetration of platelet particles through the graft wall at several length scales, thus indicating their importance as design parameters -- It was found that the permeability is strongly depends on the micro-structure of the fabric, changing the local fluid dynamics and the time of residence of platelets inside the wall -- Moreover, the porous walls cause deviations from Poiseuille flow due to leakage flow through the wall from a macroscopic viewpoint -- Lastly, it was possible to observe that the textile wall with different porosities, acting like a barrier between the blood and an aneurysmal zone, affects the flow pattern, the number of platelets adhered to the artificial surface and the time of residence of platelets into the aneurysmal zone -- In conclusion, predicting the flow pattern and the mobility of blood cells through the textile wall before the graft is manufactured, the development of new textile grafts can be improved |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.available.none.fl_str_mv |
2017-06-21T15:21:46Z |
dc.date.accessioned.none.fl_str_mv |
2017-06-21T15:21:46Z |
dc.type.eng.fl_str_mv |
doctoralThesis info:eu-repo/semantics/doctoralThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.local.spa.fl_str_mv |
Tesis Doctoral |
dc.type.hasVersion.eng.fl_str_mv |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/11482 |
dc.identifier.local.none.fl_str_mv |
660.2842CD V152C |
url |
http://hdl.handle.net/10784/11482 |
identifier_str_mv |
660.2842CD V152C |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ingeniería |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/e3cbd837-fcf9-41ff-9385-1a022d69c5ce/download https://repository.eafit.edu.co/bitstreams/89a97f8c-5586-4748-9c13-40d857e00c92/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 62eb55f2f79cebd07724616161142bae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110164364558336 |
spelling |
García Ruíz, Manuel JulioBustamante Osorno, JohnValencia Cardona, Raúl AdolfoDoctor in Engineeringrvalenc2@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2017-06-21T15:21:46Z20152017-06-21T15:21:46Zhttp://hdl.handle.net/10784/11482660.2842CD V152CTextile vascular grafts are biomedical devices that serve as partial replacement of damaged arterial vessels, prevent aneurysms rupture and restore normal blood flow -- It is believed that the success of a textile vascular graft, in the healing process after implantation, is due to the porous micro-structure of the wall -- Among the key properties that take part in the tissue repair process are the type of fabric and degree of porosity and permeability, defining the ability of a well-controlled environment for the neovascularization, nutrient supply, and cellular transport -- Although the transport of fluids through textiles is of great technical interest in biomedical applications, little is known about predicting the micro-flow pattern and the transport and deposition of individual platelets, related with the graft occlusion -- Often, this information is difficult to obtain experimentally both in vivo and in vitro, representing a great deal of research efforts -- The aim of this work is to investigate how the type of fabric, permeability and porosity affect both the local fluid dynamics at several scales and the fluid-particle interaction among platelets in textile grafts with an anastomosis of end-to-end configuration -- Two types of samples were analyzed: woven and electrospun, this last one has been manufactured -- This study involves both experimental and computational tests -- The experimental tests were performed to characterize the permeability and porosity under static conditions -- The computational tests are based on a multiscale approach where the fluid flow was solved with the Finite Element Method and the discrete particles were solved with the Molecular Dynamic Method -- The fluid-particle interaction was accomplished in one-, two-, and four-ways, where the blood was considered as a suspension of platelets in plasma -- The textile wall was considered as a porous media with two scales of length: straight tubular structure with porous walls for the macro-domain and representative unit cells of fabric for the micro-domain. Additionally, it presents the implementation of a numerical case that includes one of the main applications of textile vascular grafts to repair Abdominal Aortic Aneurysms (AAA) -- The results have shown that the type of fabric in textile vascular grafts and the degree of porosity and permeability affect the local fluid dynamics and the level of penetration of platelet particles through the graft wall at several length scales, thus indicating their importance as design parameters -- It was found that the permeability is strongly depends on the micro-structure of the fabric, changing the local fluid dynamics and the time of residence of platelets inside the wall -- Moreover, the porous walls cause deviations from Poiseuille flow due to leakage flow through the wall from a macroscopic viewpoint -- Lastly, it was possible to observe that the textile wall with different porosities, acting like a barrier between the blood and an aneurysmal zone, affects the flow pattern, the number of platelets adhered to the artificial surface and the time of residence of platelets into the aneurysmal zone -- In conclusion, predicting the flow pattern and the mobility of blood cells through the textile wall before the graft is manufactured, the development of new textile grafts can be improvedspaUniversidad EAFITDoctorado en IngenieríaEscuela de IngenieríaMedicina regenerativaIngeniería de tejidosAngiografía por resonancia magnéticaDinámica de Fluídos Computacionales (CFD)MÉTODO DE ELEMENTOS FINITOSANASTOMOSIS ARTERIOVENOSAPRÓTESIS DE VASOS SANGUÍNEOSANEURISMASMATERIALES BIOMÉDICOSPOLÍMEROS EN MEDICINACONSERVACIÓN DE TEJIDOSDINÁMICA DE FLUIDOSMATERIALES POROSOSMODELOS MATEMÁTICOSMOVILIDAD CELULARFinite element methodArteriovenous anastomosisBlood-vessels prosthesisAneurysmsBiomedical materialsPolymers in medicineTissues - PreservationFluid dynamicsPorous materialsMathematical modelsCells - MotilityComputational Study of Cell Mobility and Transport Phenomena Through Textile Vascular Grafts Using a Multi-Scale ApproachdoctoralThesisinfo:eu-repo/semantics/doctoralThesisTesis DoctoralacceptedVersionhttp://purl.org/coar/resource_type/c_db06Acceso abiertohttp://purl.org/coar/access_right/c_abf2LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/e3cbd837-fcf9-41ff-9385-1a022d69c5ce/download76025f86b095439b7ac65b367055d40cMD51ORIGINALRaulAdolfo_ValenciaCardona_2015.pdfRaulAdolfo_ValenciaCardona_2015.pdfTexto completoapplication/pdf8658043https://repository.eafit.edu.co/bitstreams/89a97f8c-5586-4748-9c13-40d857e00c92/download62eb55f2f79cebd07724616161142baeMD5210784/11482oai:repository.eafit.edu.co:10784/114822020-03-25 12:16:30.075open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK |