Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the rela...
- Autores:
-
Hoyos Sierra, Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/7757
- Acceso en línea:
- http://hdl.handle.net/10784/7757
- Palabra clave:
- Depth Map
Parameter Tuning
Statical Evaluation
ALGORITMOS
ANÁLISIS DE REGRESIÓN
ESTADÍSTICA MATEMÁTICA
ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS
CARTOGRAFÍA
ANÁLISIS FACTORIAL
Algorithms
Regression analysis
Mathematical statistics
Analysis of variance - data processing
Cartography
Factor analysis
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_90e2e7430e32603827f28aed5cfac29c |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/7757 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Ruiz Salguero, Oscar EduardoHoyos Sierra, AlejandroIngeniero MecánicoAlejandro Hoyos Sierra (ahoyossi@eafit.edu.co)Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2015-11-23T19:52:37Z20112015-11-23T19:52:37Z006.37CDH868http://hdl.handle.net/10784/7757In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad pixels -- The implemented methodology improves the performance of dense depth map algorithms -- As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table -- The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury -- Future work aims to achieve the tuning by using significantly smaller data sets on fractional factorial and response surface design of experimentsspaUniversidad EAFITIngeniería MecánicaEscuela de Ingeniería. Departamento de Ingeniería MecánicaDepth MapParameter TuningStatical EvaluationALGORITMOSANÁLISIS DE REGRESIÓNESTADÍSTICA MATEMÁTICAANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOSCARTOGRAFÍAANÁLISIS FACTORIALAlgorithmsRegression analysisMathematical statisticsAnalysis of variance - data processingCartographyFactor analysisStatiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithminfo:eu-repo/semantics/bachelorThesisbachelorThesisTrabajo de gradoacceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAcceso abiertohttp://purl.org/coar/access_right/c_abf2ORIGINALAlejandro_HoyosSierra_2011.pdfAlejandro_HoyosSierra_2011.pdfTexto Completoapplication/pdf3009788https://repository.eafit.edu.co/bitstreams/0dcaa6d2-253f-40b8-9e87-0875abc1baf5/download645a6204271f1d510663b19678b85fd1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82718https://repository.eafit.edu.co/bitstreams/3e0bd7a7-c94d-47b3-b048-e54dc3133159/download8b2b1344d55c9cfe429c4939b65f59a6MD5210784/7757oai:repository.eafit.edu.co:10784/77572015-11-23 14:52:37.558open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.spa.fl_str_mv |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm |
title |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm |
spellingShingle |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm Depth Map Parameter Tuning Statical Evaluation ALGORITMOS ANÁLISIS DE REGRESIÓN ESTADÍSTICA MATEMÁTICA ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS CARTOGRAFÍA ANÁLISIS FACTORIAL Algorithms Regression analysis Mathematical statistics Analysis of variance - data processing Cartography Factor analysis |
title_short |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm |
title_full |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm |
title_fullStr |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm |
title_full_unstemmed |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm |
title_sort |
Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm |
dc.creator.fl_str_mv |
Hoyos Sierra, Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Ruiz Salguero, Oscar Eduardo |
dc.contributor.author.none.fl_str_mv |
Hoyos Sierra, Alejandro |
dc.subject.spa.fl_str_mv |
Depth Map Parameter Tuning Statical Evaluation |
topic |
Depth Map Parameter Tuning Statical Evaluation ALGORITMOS ANÁLISIS DE REGRESIÓN ESTADÍSTICA MATEMÁTICA ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS CARTOGRAFÍA ANÁLISIS FACTORIAL Algorithms Regression analysis Mathematical statistics Analysis of variance - data processing Cartography Factor analysis |
dc.subject.lemb.spa.fl_str_mv |
ALGORITMOS ANÁLISIS DE REGRESIÓN ESTADÍSTICA MATEMÁTICA ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS CARTOGRAFÍA ANÁLISIS FACTORIAL |
dc.subject.keyword.spa.fl_str_mv |
Algorithms Regression analysis Mathematical statistics Analysis of variance - data processing Cartography Factor analysis |
description |
In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad pixels -- The implemented methodology improves the performance of dense depth map algorithms -- As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table -- The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury -- Future work aims to achieve the tuning by using significantly smaller data sets on fractional factorial and response surface design of experiments |
publishDate |
2011 |
dc.date.issued.none.fl_str_mv |
2011 |
dc.date.available.none.fl_str_mv |
2015-11-23T19:52:37Z |
dc.date.accessioned.none.fl_str_mv |
2015-11-23T19:52:37Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.hasVersion.eng.fl_str_mv |
acceptedVersion |
dc.identifier.other.none.fl_str_mv |
006.37CDH868 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/7757 |
identifier_str_mv |
006.37CDH868 |
url |
http://hdl.handle.net/10784/7757 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ingeniería. Departamento de Ingeniería Mecánica |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/0dcaa6d2-253f-40b8-9e87-0875abc1baf5/download https://repository.eafit.edu.co/bitstreams/3e0bd7a7-c94d-47b3-b048-e54dc3133159/download |
bitstream.checksum.fl_str_mv |
645a6204271f1d510663b19678b85fd1 8b2b1344d55c9cfe429c4939b65f59a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110637914062848 |