Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm

In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the rela...

Full description

Autores:
Hoyos Sierra, Alejandro
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/7757
Acceso en línea:
http://hdl.handle.net/10784/7757
Palabra clave:
Depth Map
Parameter Tuning
Statical Evaluation
ALGORITMOS
ANÁLISIS DE REGRESIÓN
ESTADÍSTICA MATEMÁTICA
ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS
CARTOGRAFÍA
ANÁLISIS FACTORIAL
Algorithms
Regression analysis
Mathematical statistics
Analysis of variance - data processing
Cartography
Factor analysis
Rights
License
Acceso abierto
id REPOEAFIT2_90e2e7430e32603827f28aed5cfac29c
oai_identifier_str oai:repository.eafit.edu.co:10784/7757
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Ruiz Salguero, Oscar EduardoHoyos Sierra, AlejandroIngeniero MecánicoAlejandro Hoyos Sierra (ahoyossi@eafit.edu.co)Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2015-11-23T19:52:37Z20112015-11-23T19:52:37Z006.37CDH868http://hdl.handle.net/10784/7757In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad pixels -- The implemented methodology improves the performance of dense depth map algorithms -- As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table -- The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury -- Future work aims to achieve the tuning by using significantly smaller data sets on fractional factorial and response surface design of experimentsspaUniversidad EAFITIngeniería MecánicaEscuela de Ingeniería. Departamento de Ingeniería MecánicaDepth MapParameter TuningStatical EvaluationALGORITMOSANÁLISIS DE REGRESIÓNESTADÍSTICA MATEMÁTICAANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOSCARTOGRAFÍAANÁLISIS FACTORIALAlgorithmsRegression analysisMathematical statisticsAnalysis of variance - data processingCartographyFactor analysisStatiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithminfo:eu-repo/semantics/bachelorThesisbachelorThesisTrabajo de gradoacceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAcceso abiertohttp://purl.org/coar/access_right/c_abf2ORIGINALAlejandro_HoyosSierra_2011.pdfAlejandro_HoyosSierra_2011.pdfTexto Completoapplication/pdf3009788https://repository.eafit.edu.co/bitstreams/0dcaa6d2-253f-40b8-9e87-0875abc1baf5/download645a6204271f1d510663b19678b85fd1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82718https://repository.eafit.edu.co/bitstreams/3e0bd7a7-c94d-47b3-b048-e54dc3133159/download8b2b1344d55c9cfe429c4939b65f59a6MD5210784/7757oai:repository.eafit.edu.co:10784/77572015-11-23 14:52:37.558open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.spa.fl_str_mv Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
title Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
spellingShingle Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
Depth Map
Parameter Tuning
Statical Evaluation
ALGORITMOS
ANÁLISIS DE REGRESIÓN
ESTADÍSTICA MATEMÁTICA
ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS
CARTOGRAFÍA
ANÁLISIS FACTORIAL
Algorithms
Regression analysis
Mathematical statistics
Analysis of variance - data processing
Cartography
Factor analysis
title_short Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
title_full Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
title_fullStr Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
title_full_unstemmed Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
title_sort Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm
dc.creator.fl_str_mv Hoyos Sierra, Alejandro
dc.contributor.advisor.none.fl_str_mv Ruiz Salguero, Oscar Eduardo
dc.contributor.author.none.fl_str_mv Hoyos Sierra, Alejandro
dc.subject.spa.fl_str_mv Depth Map
Parameter Tuning
Statical Evaluation
topic Depth Map
Parameter Tuning
Statical Evaluation
ALGORITMOS
ANÁLISIS DE REGRESIÓN
ESTADÍSTICA MATEMÁTICA
ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS
CARTOGRAFÍA
ANÁLISIS FACTORIAL
Algorithms
Regression analysis
Mathematical statistics
Analysis of variance - data processing
Cartography
Factor analysis
dc.subject.lemb.spa.fl_str_mv ALGORITMOS
ANÁLISIS DE REGRESIÓN
ESTADÍSTICA MATEMÁTICA
ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS
CARTOGRAFÍA
ANÁLISIS FACTORIAL
dc.subject.keyword.spa.fl_str_mv Algorithms
Regression analysis
Mathematical statistics
Analysis of variance - data processing
Cartography
Factor analysis
description In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad pixels -- The implemented methodology improves the performance of dense depth map algorithms -- As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table -- The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury -- Future work aims to achieve the tuning by using significantly smaller data sets on fractional factorial and response surface design of experiments
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.available.none.fl_str_mv 2015-11-23T19:52:37Z
dc.date.accessioned.none.fl_str_mv 2015-11-23T19:52:37Z
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
dc.identifier.other.none.fl_str_mv 006.37CDH868
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/7757
identifier_str_mv 006.37CDH868
url http://hdl.handle.net/10784/7757
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.program.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Escuela de Ingeniería. Departamento de Ingeniería Mecánica
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/0dcaa6d2-253f-40b8-9e87-0875abc1baf5/download
https://repository.eafit.edu.co/bitstreams/3e0bd7a7-c94d-47b3-b048-e54dc3133159/download
bitstream.checksum.fl_str_mv 645a6204271f1d510663b19678b85fd1
8b2b1344d55c9cfe429c4939b65f59a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110637914062848