Statiscal evaluation of the user-specified input parameters in an adaptive weight depth map algorithm

In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the rela...

Full description

Autores:
Hoyos Sierra, Alejandro
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/7757
Acceso en línea:
http://hdl.handle.net/10784/7757
Palabra clave:
Depth Map
Parameter Tuning
Statical Evaluation
ALGORITMOS
ANÁLISIS DE REGRESIÓN
ESTADÍSTICA MATEMÁTICA
ANÁLISIS DE VARIANZA - PROCESAMIENTO DE DATOS
CARTOGRAFÍA
ANÁLISIS FACTORIAL
Algorithms
Regression analysis
Mathematical statistics
Analysis of variance - data processing
Cartography
Factor analysis
Rights
License
Acceso abierto
Description
Summary:In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments -- A structured statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad pixels -- The implemented methodology improves the performance of dense depth map algorithms -- As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table -- The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury -- Future work aims to achieve the tuning by using significantly smaller data sets on fractional factorial and response surface design of experiments