A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences

For the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built -- In this paper, the geometry induced on this manifold is characterized by q-diverg...

Full description

Autores:
Loaiza Ossa, Gabriel Ignacio
Quiceno Echavarría, Héctor Román
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/5244
Acceso en línea:
http://hdl.handle.net/10784/5244
Palabra clave:
ALGORITMOS
ESPACIOS DE BANACH
ESPACIOS VECTORIALES
TEOREMA DE BANACH
GEOMETRÍA DE RIEMANN
GEOMETRÍA DIFERENCIAL
ESPACIOS MÉTRICOS
MATEMÁTICAS
INTELIGENCIA ARTIFICIAL
PROCESAMIENTO DE IMÁGENES
Algorithms
Banach spaces
Vector spaces
Banach- theorem
Geometry, riemannian
Geometry, differential
Metric spaces
Mathematics
Artificial intelligence
Image processing
Espacios de Orlicz
Rights
License
Springer-Verlag Berlin Heidelberg
id REPOEAFIT2_8e777fa03ecd31d28608a99f3e3fdd47
oai_identifier_str oai:repository.eafit.edu.co:10784/5244
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 2015-04-24T16:18:33Z20132015-04-24T16:18:33Z0302-9743http://hdl.handle.net/10784/524410.1007/978-3-642-40020-9_82For the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built -- In this paper, the geometry induced on this manifold is characterized by q-divergence functionals -- This geometry turns out to be a generalization of the geometry given by Fisher information metric and Levi-Civita connections -- Moreover, the classical Amari´s α-connections appears as special case of the q−connections (q) -- The main result is the expected one, namely the zero curvature of the manifoldFor the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built -- In this paper, the geometry induced on this manifold is characterized by q-divergence functionals -- This geometry turns out to be a generalization of the geometry given by Fisher information metric and Levi-Civita connections -- Moreover, the classical Amari´s α-connections appears as special case of the q−connections (q) -- The main result is the expected one, namely the zero curvature of the manifoldengSpringer Berlin HeidelbergGeometric Science of Information Lecture Notes in Computer Science Volume 8085, 2013, pp 737-742http://dx.doi.org/10.1007/978-3-642-40020-9_82Springer-Verlag Berlin HeidelbergAcceso restringidohttp://purl.org/coar/access_right/c_16ecA Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergencesarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1ALGORITMOSESPACIOS DE BANACHESPACIOS VECTORIALESTEOREMA DE BANACHGEOMETRÍA DE RIEMANNGEOMETRÍA DIFERENCIALESPACIOS MÉTRICOSMATEMÁTICASINTELIGENCIA ARTIFICIALPROCESAMIENTO DE IMÁGENESAlgorithmsBanach spacesVector spacesBanach- theoremGeometry, riemannianGeometry, differentialMetric spacesMathematicsArtificial intelligenceImage processingEspacios de OrliczUniversidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y AplicacionesGabriel Loaiza (gloaiza@eafit.edu.co)Héctor R. Quiceno (hquiceno@eafit.edu.co)Loaiza Ossa, Gabriel IgnacioQuiceno Echavarría, Héctor RománAnálisis Funcional y AplicacionesGeometric Science of Information Lecture Notes in Computer Science8085742737ORIGINALa_riemannian_geometry_in_the_q-exponential_banach_manifold_induced_by_q-divergences.pdfa_riemannian_geometry_in_the_q-exponential_banach_manifold_induced_by_q-divergences.pdfapplication/pdf351887https://repository.eafit.edu.co/bitstreams/b6ff3896-6413-4cd9-971f-bae2425d6ed3/download47d9c752a4949992b649a3ac711912c9MD52A Riemannian Geometry in the q-Exponential Banach Manifold Induced by q-Divergences.pdfA Riemannian Geometry in the q-Exponential Banach Manifold Induced by q-Divergences.pdfapplication/pdf140821https://repository.eafit.edu.co/bitstreams/6dca25b7-9a2c-45cf-831f-56c8000f6a81/downloadb666677b9e4d3d7c65c51f395d8fd7c8MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/b9508ccb-bfab-402c-bbcf-5d6289aaf341/download76025f86b095439b7ac65b367055d40cMD5410784/5244oai:repository.eafit.edu.co:10784/52442021-09-24 16:44:19.306restrictedhttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
title A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
spellingShingle A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
ALGORITMOS
ESPACIOS DE BANACH
ESPACIOS VECTORIALES
TEOREMA DE BANACH
GEOMETRÍA DE RIEMANN
GEOMETRÍA DIFERENCIAL
ESPACIOS MÉTRICOS
MATEMÁTICAS
INTELIGENCIA ARTIFICIAL
PROCESAMIENTO DE IMÁGENES
Algorithms
Banach spaces
Vector spaces
Banach- theorem
Geometry, riemannian
Geometry, differential
Metric spaces
Mathematics
Artificial intelligence
Image processing
Espacios de Orlicz
title_short A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
title_full A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
title_fullStr A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
title_full_unstemmed A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
title_sort A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
dc.creator.fl_str_mv Loaiza Ossa, Gabriel Ignacio
Quiceno Echavarría, Héctor Román
dc.contributor.department.none.fl_str_mv Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y Aplicaciones
dc.contributor.eafitauthor.spa.fl_str_mv Gabriel Loaiza (gloaiza@eafit.edu.co)
Héctor R. Quiceno (hquiceno@eafit.edu.co)
dc.contributor.author.none.fl_str_mv Loaiza Ossa, Gabriel Ignacio
Quiceno Echavarría, Héctor Román
dc.contributor.researchgroup.spa.fl_str_mv Análisis Funcional y Aplicaciones
dc.subject.lemb.spa.fl_str_mv ALGORITMOS
ESPACIOS DE BANACH
ESPACIOS VECTORIALES
TEOREMA DE BANACH
GEOMETRÍA DE RIEMANN
GEOMETRÍA DIFERENCIAL
ESPACIOS MÉTRICOS
MATEMÁTICAS
INTELIGENCIA ARTIFICIAL
PROCESAMIENTO DE IMÁGENES
topic ALGORITMOS
ESPACIOS DE BANACH
ESPACIOS VECTORIALES
TEOREMA DE BANACH
GEOMETRÍA DE RIEMANN
GEOMETRÍA DIFERENCIAL
ESPACIOS MÉTRICOS
MATEMÁTICAS
INTELIGENCIA ARTIFICIAL
PROCESAMIENTO DE IMÁGENES
Algorithms
Banach spaces
Vector spaces
Banach- theorem
Geometry, riemannian
Geometry, differential
Metric spaces
Mathematics
Artificial intelligence
Image processing
Espacios de Orlicz
dc.subject.keyword.eng.fl_str_mv Algorithms
Banach spaces
Vector spaces
Banach- theorem
Geometry, riemannian
Geometry, differential
Metric spaces
Mathematics
Artificial intelligence
Image processing
dc.subject.keyword.spa.fl_str_mv Espacios de Orlicz
description For the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built -- In this paper, the geometry induced on this manifold is characterized by q-divergence functionals -- This geometry turns out to be a generalization of the geometry given by Fisher information metric and Levi-Civita connections -- Moreover, the classical Amari´s α-connections appears as special case of the q−connections (q) -- The main result is the expected one, namely the zero curvature of the manifold
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.available.none.fl_str_mv 2015-04-24T16:18:33Z
dc.date.accessioned.none.fl_str_mv 2015-04-24T16:18:33Z
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0302-9743
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/5244
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-642-40020-9_82
identifier_str_mv 0302-9743
10.1007/978-3-642-40020-9_82
url http://hdl.handle.net/10784/5244
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Geometric Science of Information Lecture Notes in Computer Science Volume 8085, 2013, pp 737-742
dc.relation.uri.none.fl_str_mv http://dx.doi.org/10.1007/978-3-642-40020-9_82
dc.rights.spa.fl_str_mv Springer-Verlag Berlin Heidelberg
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.local.spa.fl_str_mv Acceso restringido
rights_invalid_str_mv Springer-Verlag Berlin Heidelberg
Acceso restringido
http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Springer Berlin Heidelberg
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/b6ff3896-6413-4cd9-971f-bae2425d6ed3/download
https://repository.eafit.edu.co/bitstreams/6dca25b7-9a2c-45cf-831f-56c8000f6a81/download
https://repository.eafit.edu.co/bitstreams/b9508ccb-bfab-402c-bbcf-5d6289aaf341/download
bitstream.checksum.fl_str_mv 47d9c752a4949992b649a3ac711912c9
b666677b9e4d3d7c65c51f395d8fd7c8
76025f86b095439b7ac65b367055d40c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110173408526336