A Riemannian geometry in the q-Exponential Banach manifold induced by q-Divergences
For the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built -- In this paper, the geometry induced on this manifold is characterized by q-diverg...
- Autores:
-
Loaiza Ossa, Gabriel Ignacio
Quiceno Echavarría, Héctor Román
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/5244
- Acceso en línea:
- http://hdl.handle.net/10784/5244
- Palabra clave:
- ALGORITMOS
ESPACIOS DE BANACH
ESPACIOS VECTORIALES
TEOREMA DE BANACH
GEOMETRÍA DE RIEMANN
GEOMETRÍA DIFERENCIAL
ESPACIOS MÉTRICOS
MATEMÁTICAS
INTELIGENCIA ARTIFICIAL
PROCESAMIENTO DE IMÁGENES
Algorithms
Banach spaces
Vector spaces
Banach- theorem
Geometry, riemannian
Geometry, differential
Metric spaces
Mathematics
Artificial intelligence
Image processing
Espacios de Orlicz
- Rights
- License
- Springer-Verlag Berlin Heidelberg
Summary: | For the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built -- In this paper, the geometry induced on this manifold is characterized by q-divergence functionals -- This geometry turns out to be a generalization of the geometry given by Fisher information metric and Levi-Civita connections -- Moreover, the classical Amari´s α-connections appears as special case of the q−connections (q) -- The main result is the expected one, namely the zero curvature of the manifold |
---|