Numerical analysis of wave propagation in fluid-filled deformable tubes

The theory of Biot describing wave propagation in fluid saturated porous media is a good effective approximation of a wave induced in a fluid-filled deformable tube -- Nonetheless, it has been found that Biot’s theory has shortcomings in predicting the fast P-wave velocities and the amount of intrin...

Full description

Autores:
Uribe, David
Steeb, Holger
Saenger, Erik H.
Kurzeja, Patrick
Ruíz, Óscar
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9686
Acceso en línea:
http://hdl.handle.net/10784/9686
Palabra clave:
PROPAGACIÓN DE ONDAS
MÉTODO DE ELEMENTOS FINITOS
MATERIALES POROSOS
Wave propagation
Finite element method
Porous materials
Wave propagation
Finite element method
Porous materials
Teoría de Biot
Rights
License
Acceso cerrado
id REPOEAFIT2_8e226cbc12d3accf2c58fc3b1e6917ca
oai_identifier_str oai:repository.eafit.edu.co:10784/9686
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Numerical analysis of wave propagation in fluid-filled deformable tubes
title Numerical analysis of wave propagation in fluid-filled deformable tubes
spellingShingle Numerical analysis of wave propagation in fluid-filled deformable tubes
PROPAGACIÓN DE ONDAS
MÉTODO DE ELEMENTOS FINITOS
MATERIALES POROSOS
Wave propagation
Finite element method
Porous materials
Wave propagation
Finite element method
Porous materials
Teoría de Biot
title_short Numerical analysis of wave propagation in fluid-filled deformable tubes
title_full Numerical analysis of wave propagation in fluid-filled deformable tubes
title_fullStr Numerical analysis of wave propagation in fluid-filled deformable tubes
title_full_unstemmed Numerical analysis of wave propagation in fluid-filled deformable tubes
title_sort Numerical analysis of wave propagation in fluid-filled deformable tubes
dc.creator.fl_str_mv Uribe, David
Steeb, Holger
Saenger, Erik H.
Kurzeja, Patrick
Ruíz, Óscar
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Uribe, David
Steeb, Holger
Saenger, Erik H.
Kurzeja, Patrick
Ruíz, Óscar
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv PROPAGACIÓN DE ONDAS
MÉTODO DE ELEMENTOS FINITOS
MATERIALES POROSOS
topic PROPAGACIÓN DE ONDAS
MÉTODO DE ELEMENTOS FINITOS
MATERIALES POROSOS
Wave propagation
Finite element method
Porous materials
Wave propagation
Finite element method
Porous materials
Teoría de Biot
dc.subject.keyword.spa.fl_str_mv Wave propagation
Finite element method
Porous materials
dc.subject.keyword.eng.fl_str_mv Wave propagation
Finite element method
Porous materials
dc.subject.keyword..keywor.fl_str_mv Teoría de Biot
description The theory of Biot describing wave propagation in fluid saturated porous media is a good effective approximation of a wave induced in a fluid-filled deformable tube -- Nonetheless, it has been found that Biot’s theory has shortcomings in predicting the fast P-wave velocities and the amount of intrinsic attenuation -- These problems arises when complex mechanical interactions of the solid phase and the fluid phase in the micro-scale are not taken into account -- In contrast, the approach proposed by Bernabe does take into account micro-scopic interaction between phases and therefore poses an interesting alternative to Biot’s theory -- A Wave propagating in a deformable tube saturated with a viscous fluid is a simplified model of a porous material, and therefore the study of this geometry is of great interest -- By using this geometry, the results of analytical and numerical results have an easier interpretation and therefore can be compared straightforward -- Using a Finite Difference viscoelastic wave propagation code, the transient response was simulated -- The wave source was modified with different characteristic frequencies in order to gain information of the dispersion relation -- It was found that the P-wave velocities of the simulations at sub-critical frequencies closely match those of Bernabe’s solution, but at over-critical frequencies they come closer to Biot’s solution
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-11-29
dc.date.available.none.fl_str_mv 2016-11-18T22:20:49Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T22:20:49Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1617-7061
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9686
dc.identifier.doi.none.fl_str_mv 10.1002/pamm.201310160
identifier_str_mv 1617-7061
10.1002/pamm.201310160
url http://hdl.handle.net/10784/9686
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv PAMM, Volume 13, Issue 1, pp 329-330
dc.relation.uri.none.fl_str_mv http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310160/abstract
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.local.spa.fl_str_mv Acceso cerrado
rights_invalid_str_mv Acceso cerrado
http://purl.org/coar/access_right/c_14cb
dc.format.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv WILEY-VCH Verlag
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/ce2dd8e8-600d-4eb5-8af0-76bf1323e500/download
https://repository.eafit.edu.co/bitstreams/090845ec-aa83-4cee-8cde-cf58756a0ee2/download
https://repository.eafit.edu.co/bitstreams/546cd4ff-461d-407b-b3aa-a03eb183f03b/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
5adac31f6a57cc17387841e43ba6ab86
1422ec0e1e35bc3f0aeb0727d0037543
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110240659996672
spelling 2016-11-18T22:20:49Z2013-11-292016-11-18T22:20:49Z1617-7061http://hdl.handle.net/10784/968610.1002/pamm.201310160The theory of Biot describing wave propagation in fluid saturated porous media is a good effective approximation of a wave induced in a fluid-filled deformable tube -- Nonetheless, it has been found that Biot’s theory has shortcomings in predicting the fast P-wave velocities and the amount of intrinsic attenuation -- These problems arises when complex mechanical interactions of the solid phase and the fluid phase in the micro-scale are not taken into account -- In contrast, the approach proposed by Bernabe does take into account micro-scopic interaction between phases and therefore poses an interesting alternative to Biot’s theory -- A Wave propagating in a deformable tube saturated with a viscous fluid is a simplified model of a porous material, and therefore the study of this geometry is of great interest -- By using this geometry, the results of analytical and numerical results have an easier interpretation and therefore can be compared straightforward -- Using a Finite Difference viscoelastic wave propagation code, the transient response was simulated -- The wave source was modified with different characteristic frequencies in order to gain information of the dispersion relation -- It was found that the P-wave velocities of the simulations at sub-critical frequencies closely match those of Bernabe’s solution, but at over-critical frequencies they come closer to Biot’s solutionapplication/pdfengWILEY-VCH VerlagPAMM, Volume 13, Issue 1, pp 329-330http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310160/abstractAcceso cerradohttp://purl.org/coar/access_right/c_14cbNumerical analysis of wave propagation in fluid-filled deformable tubesinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1PROPAGACIÓN DE ONDASMÉTODO DE ELEMENTOS FINITOSMATERIALES POROSOSWave propagationFinite element methodPorous materialsWave propagationFinite element methodPorous materialsTeoría de BiotUniversidad EAFIT. Departamento de Ingeniería MecánicaUribe, DavidSteeb, HolgerSaenger, Erik H.Kurzeja, PatrickRuíz, ÓscarLaboratorio CAD/CAM/CAEPAMM131329330PAMMLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/ce2dd8e8-600d-4eb5-8af0-76bf1323e500/download76025f86b095439b7ac65b367055d40cMD51ORIGINALNumerical-analysis.pdfNumerical-analysis.pdfWeb Page Printapplication/pdf164044https://repository.eafit.edu.co/bitstreams/090845ec-aa83-4cee-8cde-cf58756a0ee2/download5adac31f6a57cc17387841e43ba6ab86MD52Numerical-analysis.htmlNumerical-analysis.htmltext/html266https://repository.eafit.edu.co/bitstreams/546cd4ff-461d-407b-b3aa-a03eb183f03b/download1422ec0e1e35bc3f0aeb0727d0037543MD5310784/9686oai:repository.eafit.edu.co:10784/96862021-09-03 15:43:52.888open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK