Numerical analysis of wave propagation in fluid-filled deformable tubes
The theory of Biot describing wave propagation in fluid saturated porous media is a good effective approximation of a wave induced in a fluid-filled deformable tube -- Nonetheless, it has been found that Biot’s theory has shortcomings in predicting the fast P-wave velocities and the amount of intrin...
- Autores:
-
Uribe, David
Steeb, Holger
Saenger, Erik H.
Kurzeja, Patrick
Ruíz, Óscar
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9686
- Acceso en línea:
- http://hdl.handle.net/10784/9686
- Palabra clave:
- PROPAGACIÓN DE ONDAS
MÉTODO DE ELEMENTOS FINITOS
MATERIALES POROSOS
Wave propagation
Finite element method
Porous materials
Wave propagation
Finite element method
Porous materials
Teoría de Biot
- Rights
- License
- Acceso cerrado
id |
REPOEAFIT2_8e226cbc12d3accf2c58fc3b1e6917ca |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9686 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Numerical analysis of wave propagation in fluid-filled deformable tubes |
title |
Numerical analysis of wave propagation in fluid-filled deformable tubes |
spellingShingle |
Numerical analysis of wave propagation in fluid-filled deformable tubes PROPAGACIÓN DE ONDAS MÉTODO DE ELEMENTOS FINITOS MATERIALES POROSOS Wave propagation Finite element method Porous materials Wave propagation Finite element method Porous materials Teoría de Biot |
title_short |
Numerical analysis of wave propagation in fluid-filled deformable tubes |
title_full |
Numerical analysis of wave propagation in fluid-filled deformable tubes |
title_fullStr |
Numerical analysis of wave propagation in fluid-filled deformable tubes |
title_full_unstemmed |
Numerical analysis of wave propagation in fluid-filled deformable tubes |
title_sort |
Numerical analysis of wave propagation in fluid-filled deformable tubes |
dc.creator.fl_str_mv |
Uribe, David Steeb, Holger Saenger, Erik H. Kurzeja, Patrick Ruíz, Óscar |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Uribe, David Steeb, Holger Saenger, Erik H. Kurzeja, Patrick Ruíz, Óscar |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
PROPAGACIÓN DE ONDAS MÉTODO DE ELEMENTOS FINITOS MATERIALES POROSOS |
topic |
PROPAGACIÓN DE ONDAS MÉTODO DE ELEMENTOS FINITOS MATERIALES POROSOS Wave propagation Finite element method Porous materials Wave propagation Finite element method Porous materials Teoría de Biot |
dc.subject.keyword.spa.fl_str_mv |
Wave propagation Finite element method Porous materials |
dc.subject.keyword.eng.fl_str_mv |
Wave propagation Finite element method Porous materials |
dc.subject.keyword..keywor.fl_str_mv |
Teoría de Biot |
description |
The theory of Biot describing wave propagation in fluid saturated porous media is a good effective approximation of a wave induced in a fluid-filled deformable tube -- Nonetheless, it has been found that Biot’s theory has shortcomings in predicting the fast P-wave velocities and the amount of intrinsic attenuation -- These problems arises when complex mechanical interactions of the solid phase and the fluid phase in the micro-scale are not taken into account -- In contrast, the approach proposed by Bernabe does take into account micro-scopic interaction between phases and therefore poses an interesting alternative to Biot’s theory -- A Wave propagating in a deformable tube saturated with a viscous fluid is a simplified model of a porous material, and therefore the study of this geometry is of great interest -- By using this geometry, the results of analytical and numerical results have an easier interpretation and therefore can be compared straightforward -- Using a Finite Difference viscoelastic wave propagation code, the transient response was simulated -- The wave source was modified with different characteristic frequencies in order to gain information of the dispersion relation -- It was found that the P-wave velocities of the simulations at sub-critical frequencies closely match those of Bernabe’s solution, but at over-critical frequencies they come closer to Biot’s solution |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-11-29 |
dc.date.available.none.fl_str_mv |
2016-11-18T22:20:49Z |
dc.date.accessioned.none.fl_str_mv |
2016-11-18T22:20:49Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1617-7061 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9686 |
dc.identifier.doi.none.fl_str_mv |
10.1002/pamm.201310160 |
identifier_str_mv |
1617-7061 10.1002/pamm.201310160 |
url |
http://hdl.handle.net/10784/9686 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
PAMM, Volume 13, Issue 1, pp 329-330 |
dc.relation.uri.none.fl_str_mv |
http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310160/abstract |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.local.spa.fl_str_mv |
Acceso cerrado |
rights_invalid_str_mv |
Acceso cerrado http://purl.org/coar/access_right/c_14cb |
dc.format.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
WILEY-VCH Verlag |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/ce2dd8e8-600d-4eb5-8af0-76bf1323e500/download https://repository.eafit.edu.co/bitstreams/090845ec-aa83-4cee-8cde-cf58756a0ee2/download https://repository.eafit.edu.co/bitstreams/546cd4ff-461d-407b-b3aa-a03eb183f03b/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 5adac31f6a57cc17387841e43ba6ab86 1422ec0e1e35bc3f0aeb0727d0037543 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110240659996672 |
spelling |
2016-11-18T22:20:49Z2013-11-292016-11-18T22:20:49Z1617-7061http://hdl.handle.net/10784/968610.1002/pamm.201310160The theory of Biot describing wave propagation in fluid saturated porous media is a good effective approximation of a wave induced in a fluid-filled deformable tube -- Nonetheless, it has been found that Biot’s theory has shortcomings in predicting the fast P-wave velocities and the amount of intrinsic attenuation -- These problems arises when complex mechanical interactions of the solid phase and the fluid phase in the micro-scale are not taken into account -- In contrast, the approach proposed by Bernabe does take into account micro-scopic interaction between phases and therefore poses an interesting alternative to Biot’s theory -- A Wave propagating in a deformable tube saturated with a viscous fluid is a simplified model of a porous material, and therefore the study of this geometry is of great interest -- By using this geometry, the results of analytical and numerical results have an easier interpretation and therefore can be compared straightforward -- Using a Finite Difference viscoelastic wave propagation code, the transient response was simulated -- The wave source was modified with different characteristic frequencies in order to gain information of the dispersion relation -- It was found that the P-wave velocities of the simulations at sub-critical frequencies closely match those of Bernabe’s solution, but at over-critical frequencies they come closer to Biot’s solutionapplication/pdfengWILEY-VCH VerlagPAMM, Volume 13, Issue 1, pp 329-330http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310160/abstractAcceso cerradohttp://purl.org/coar/access_right/c_14cbNumerical analysis of wave propagation in fluid-filled deformable tubesinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1PROPAGACIÓN DE ONDASMÉTODO DE ELEMENTOS FINITOSMATERIALES POROSOSWave propagationFinite element methodPorous materialsWave propagationFinite element methodPorous materialsTeoría de BiotUniversidad EAFIT. Departamento de Ingeniería MecánicaUribe, DavidSteeb, HolgerSaenger, Erik H.Kurzeja, PatrickRuíz, ÓscarLaboratorio CAD/CAM/CAEPAMM131329330PAMMLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/ce2dd8e8-600d-4eb5-8af0-76bf1323e500/download76025f86b095439b7ac65b367055d40cMD51ORIGINALNumerical-analysis.pdfNumerical-analysis.pdfWeb Page Printapplication/pdf164044https://repository.eafit.edu.co/bitstreams/090845ec-aa83-4cee-8cde-cf58756a0ee2/download5adac31f6a57cc17387841e43ba6ab86MD52Numerical-analysis.htmlNumerical-analysis.htmltext/html266https://repository.eafit.edu.co/bitstreams/546cd4ff-461d-407b-b3aa-a03eb183f03b/download1422ec0e1e35bc3f0aeb0727d0037543MD5310784/9686oai:repository.eafit.edu.co:10784/96862021-09-03 15:43:52.888open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK |