A Low-Cost Raspberry Pi-based System for Facial Recognition

Deep learning has become increasingly popular and widely applied to computer vision systems. Over the years, researchers have developed various deep learning architectures to solve different kinds of problems. However, these networks are power-hungry and require high-performance computing (i.e., GPU...

Full description

Autores:
Miranda Orostegui, Cristian
Navarro Luna, Alejandro
Manjarés García, Alejandro
Fajardo Ariza, Carlos Augusto
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/31020
Acceso en línea:
http://hdl.handle.net/10784/31020
Palabra clave:
Deep learning
facial recognition
embedded systems
FaceNet
GoogLeNet
Labeled Faces in the Wild
Deep learning
reconocimiento facial
sistemas embebidos
systemsFaceNet
FaceNetGoogLeNet
Labeled Faces in the Wild
Rights
License
Acceso abierto
id REPOEAFIT2_8d5f3a5af6b31afa97f6b0d828b3e149
oai_identifier_str oai:repository.eafit.edu.co:10784/31020
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv A Low-Cost Raspberry Pi-based System for Facial Recognition
dc.title.spa.fl_str_mv Sistema de reconocimiento facial sin reentrenamiento para nuevos usuarios
title A Low-Cost Raspberry Pi-based System for Facial Recognition
spellingShingle A Low-Cost Raspberry Pi-based System for Facial Recognition
Deep learning
facial recognition
embedded systems
FaceNet
GoogLeNet
Labeled Faces in the Wild
Deep learning
reconocimiento facial
sistemas embebidos
systemsFaceNet
FaceNetGoogLeNet
Labeled Faces in the Wild
title_short A Low-Cost Raspberry Pi-based System for Facial Recognition
title_full A Low-Cost Raspberry Pi-based System for Facial Recognition
title_fullStr A Low-Cost Raspberry Pi-based System for Facial Recognition
title_full_unstemmed A Low-Cost Raspberry Pi-based System for Facial Recognition
title_sort A Low-Cost Raspberry Pi-based System for Facial Recognition
dc.creator.fl_str_mv Miranda Orostegui, Cristian
Navarro Luna, Alejandro
Manjarés García, Alejandro
Fajardo Ariza, Carlos Augusto
dc.contributor.author.spa.fl_str_mv Miranda Orostegui, Cristian
Navarro Luna, Alejandro
Manjarés García, Alejandro
Fajardo Ariza, Carlos Augusto
dc.contributor.affiliation.spa.fl_str_mv Universidad Industrial de Santader
Universidad Industrial de Santander
Instituto Nacional de Astrofísica, Óptica y Electrónica
Universidad Industrial de Santander
dc.subject.keyword.eng.fl_str_mv Deep learning
facial recognition
embedded systems
FaceNet
GoogLeNet
Labeled Faces in the Wild
topic Deep learning
facial recognition
embedded systems
FaceNet
GoogLeNet
Labeled Faces in the Wild
Deep learning
reconocimiento facial
sistemas embebidos
systemsFaceNet
FaceNetGoogLeNet
Labeled Faces in the Wild
dc.subject.keyword.spa.fl_str_mv Deep learning
reconocimiento facial
sistemas embebidos
systemsFaceNet
FaceNetGoogLeNet
Labeled Faces in the Wild
description Deep learning has become increasingly popular and widely applied to computer vision systems. Over the years, researchers have developed various deep learning architectures to solve different kinds of problems. However, these networks are power-hungry and require high-performance computing (i.e., GPU, TPU, etc.) to run appropriately. Moving computation to the cloud may result in traffic, latency, and privacy issues. Edge computing can solve these challenges by moving the computing closer to the edge where the data is generated. One major challenge is to fit the high resource demands of deep learning in less powerful edge computing devices. In this research, we present an implementation of an embedded facial recognition system on a low cost Raspberry Pi, which is based on the FaceNet architecture. For this implementation it was required the development of a library in C++, which allows the deployment of the inference of the Neural Network Architecture. The system had an accuracy and precision of 77.38% and 81.25%, respectively. The time of execution of the program is 11 seconds and it consumes 46 [kB] of RAM. The resulting system could be utilized as a stand-alone access control system. The implemented model and library are released at https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-01
dc.date.available.none.fl_str_mv 2022-03-23T16:59:34Z
dc.date.accessioned.none.fl_str_mv 2022-03-23T16:59:34Z
dc.date.none.fl_str_mv 2021-12-01
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
2256-4314
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/31020
identifier_str_mv 1794-9165
2256-4314
url http://hdl.handle.net/10784/31020
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/d0eab7d3-5655-41d4-9b0a-97f967850fac/download
https://repository.eafit.edu.co/bitstreams/95ca2a67-84ea-40b4-8ece-498062c8d42f/download
https://repository.eafit.edu.co/bitstreams/afdfa5c7-d122-4269-8057-d6b84b2d215b/download
bitstream.checksum.fl_str_mv 9d785f8cae9421d5ff2ef6aebeb3e3f2
ae0ee509c0e8778f1de7b3bdbe076d54
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110243841376256
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2021-12-012022-03-23T16:59:34Z2021-12-012022-03-23T16:59:34Z1794-91652256-4314http://hdl.handle.net/10784/31020Deep learning has become increasingly popular and widely applied to computer vision systems. Over the years, researchers have developed various deep learning architectures to solve different kinds of problems. However, these networks are power-hungry and require high-performance computing (i.e., GPU, TPU, etc.) to run appropriately. Moving computation to the cloud may result in traffic, latency, and privacy issues. Edge computing can solve these challenges by moving the computing closer to the edge where the data is generated. One major challenge is to fit the high resource demands of deep learning in less powerful edge computing devices. In this research, we present an implementation of an embedded facial recognition system on a low cost Raspberry Pi, which is based on the FaceNet architecture. For this implementation it was required the development of a library in C++, which allows the deployment of the inference of the Neural Network Architecture. The system had an accuracy and precision of 77.38% and 81.25%, respectively. The time of execution of the program is 11 seconds and it consumes 46 [kB] of RAM. The resulting system could be utilized as a stand-alone access control system. The implemented model and library are released at https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystemEl aprendizaje profundo se ha vuelto cada vez más popular y se aplica ampliamente a los sistemas de visión por computadora. A lo largo de los años, los investigadores han desarrollado varias arquitecturas de aprendizaje profundo para resolver diferentes tipos de problemas. Sin embargo, estas redes consumen mucha energía y requieren computación de alto rendimiento (es decir, GPU, TPU, etc.) para funcionar correctamente. Mover la computación a la nube puede resultar en problemas de tráfico, latencia y privacidad. La computación en el borde puede resolver estos desafíos, pues permite acercar el proceso de computación al lugar donde se generan los datos. Un desafío importante es adaptar las altas demandas de recursos del aprendizaje profundo a dispositivos de computación de borde menos potentes. En esta investigación, presentamos una implementación de un sistema de reconocimiento facial integrado en una Raspberry Pi de bajo costo, la cual está basada en la red FaceNet. Esta implementación requirió el desarrollo de una biblioteca en C++ que puede describir la inferencia de la arquitectura de la red neuronal FaceNet. El sistema tuvo una exactitud y precisión de 77.38% y del 81.25 %,  respectivamente. El tiempo de ejecución de cada inferencia es de 11 segundos y consume 46 [kB] de RAM. El sistema resultante podría utilizarse como un sistema de control de acceso independiente. El modelo y la librería implementados están disponibles en https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem.application/pdfengUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996Copyright © 2021 Cristian Miranda Orostegui, Alejandro Navarro Luna, Andrés Manjarrés García, Carlos Augusto Fajardo ArizaAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)A Low-Cost Raspberry Pi-based System for Facial RecognitionSistema de reconocimiento facial sin reentrenamiento para nuevos usuariosinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Deep learningfacial recognitionembedded systemsFaceNetGoogLeNetLabeled Faces in the WildDeep learningreconocimiento facialsistemas embebidossystemsFaceNetFaceNetGoogLeNetLabeled Faces in the WildMiranda Orostegui, CristianNavarro Luna, AlejandroManjarés García, AlejandroFajardo Ariza, Carlos AugustoUniversidad Industrial de SantaderUniversidad Industrial de SantanderInstituto Nacional de Astrofísica, Óptica y ElectrónicaUniversidad Industrial de SantanderIngeniería y Ciencia17347795ORIGINALA Low-Cost Raspberry.pdfA Low-Cost Raspberry.pdfTexto completo PDFapplication/pdf1114749https://repository.eafit.edu.co/bitstreams/d0eab7d3-5655-41d4-9b0a-97f967850fac/download9d785f8cae9421d5ff2ef6aebeb3e3f2MD51A Low-Cost Raspberry Pi-based.htmlA Low-Cost Raspberry Pi-based.htmlTexto completo HTMLtext/html292https://repository.eafit.edu.co/bitstreams/95ca2a67-84ea-40b4-8ece-498062c8d42f/downloadae0ee509c0e8778f1de7b3bdbe076d54MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/afdfa5c7-d122-4269-8057-d6b84b2d215b/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/31020oai:repository.eafit.edu.co:10784/310202022-05-16 02:38:58.584open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co