A Low-Cost Raspberry Pi-based System for Facial Recognition
Deep learning has become increasingly popular and widely applied to computer vision systems. Over the years, researchers have developed various deep learning architectures to solve different kinds of problems. However, these networks are power-hungry and require high-performance computing (i.e., GPU...
- Autores:
-
Miranda Orostegui, Cristian
Navarro Luna, Alejandro
Manjarés García, Alejandro
Fajardo Ariza, Carlos Augusto
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/31020
- Acceso en línea:
- http://hdl.handle.net/10784/31020
- Palabra clave:
- Deep learning
facial recognition
embedded systems
FaceNet
GoogLeNet
Labeled Faces in the Wild
Deep learning
reconocimiento facial
sistemas embebidos
systemsFaceNet
FaceNetGoogLeNet
Labeled Faces in the Wild
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_8d5f3a5af6b31afa97f6b0d828b3e149 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/31020 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A Low-Cost Raspberry Pi-based System for Facial Recognition |
dc.title.spa.fl_str_mv |
Sistema de reconocimiento facial sin reentrenamiento para nuevos usuarios |
title |
A Low-Cost Raspberry Pi-based System for Facial Recognition |
spellingShingle |
A Low-Cost Raspberry Pi-based System for Facial Recognition Deep learning facial recognition embedded systems FaceNet GoogLeNet Labeled Faces in the Wild Deep learning reconocimiento facial sistemas embebidos systemsFaceNet FaceNetGoogLeNet Labeled Faces in the Wild |
title_short |
A Low-Cost Raspberry Pi-based System for Facial Recognition |
title_full |
A Low-Cost Raspberry Pi-based System for Facial Recognition |
title_fullStr |
A Low-Cost Raspberry Pi-based System for Facial Recognition |
title_full_unstemmed |
A Low-Cost Raspberry Pi-based System for Facial Recognition |
title_sort |
A Low-Cost Raspberry Pi-based System for Facial Recognition |
dc.creator.fl_str_mv |
Miranda Orostegui, Cristian Navarro Luna, Alejandro Manjarés García, Alejandro Fajardo Ariza, Carlos Augusto |
dc.contributor.author.spa.fl_str_mv |
Miranda Orostegui, Cristian Navarro Luna, Alejandro Manjarés García, Alejandro Fajardo Ariza, Carlos Augusto |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Industrial de Santader Universidad Industrial de Santander Instituto Nacional de Astrofísica, Óptica y Electrónica Universidad Industrial de Santander |
dc.subject.keyword.eng.fl_str_mv |
Deep learning facial recognition embedded systems FaceNet GoogLeNet Labeled Faces in the Wild |
topic |
Deep learning facial recognition embedded systems FaceNet GoogLeNet Labeled Faces in the Wild Deep learning reconocimiento facial sistemas embebidos systemsFaceNet FaceNetGoogLeNet Labeled Faces in the Wild |
dc.subject.keyword.spa.fl_str_mv |
Deep learning reconocimiento facial sistemas embebidos systemsFaceNet FaceNetGoogLeNet Labeled Faces in the Wild |
description |
Deep learning has become increasingly popular and widely applied to computer vision systems. Over the years, researchers have developed various deep learning architectures to solve different kinds of problems. However, these networks are power-hungry and require high-performance computing (i.e., GPU, TPU, etc.) to run appropriately. Moving computation to the cloud may result in traffic, latency, and privacy issues. Edge computing can solve these challenges by moving the computing closer to the edge where the data is generated. One major challenge is to fit the high resource demands of deep learning in less powerful edge computing devices. In this research, we present an implementation of an embedded facial recognition system on a low cost Raspberry Pi, which is based on the FaceNet architecture. For this implementation it was required the development of a library in C++, which allows the deployment of the inference of the Neural Network Architecture. The system had an accuracy and precision of 77.38% and 81.25%, respectively. The time of execution of the program is 11 seconds and it consumes 46 [kB] of RAM. The resulting system could be utilized as a stand-alone access control system. The implemented model and library are released at https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-01 |
dc.date.available.none.fl_str_mv |
2022-03-23T16:59:34Z |
dc.date.accessioned.none.fl_str_mv |
2022-03-23T16:59:34Z |
dc.date.none.fl_str_mv |
2021-12-01 |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-9165 2256-4314 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/31020 |
identifier_str_mv |
1794-9165 2256-4314 |
url |
http://hdl.handle.net/10784/31020 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996 |
dc.relation.uri.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021) |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/d0eab7d3-5655-41d4-9b0a-97f967850fac/download https://repository.eafit.edu.co/bitstreams/95ca2a67-84ea-40b4-8ece-498062c8d42f/download https://repository.eafit.edu.co/bitstreams/afdfa5c7-d122-4269-8057-d6b84b2d215b/download |
bitstream.checksum.fl_str_mv |
9d785f8cae9421d5ff2ef6aebeb3e3f2 ae0ee509c0e8778f1de7b3bdbe076d54 da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110243841376256 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2021-12-012022-03-23T16:59:34Z2021-12-012022-03-23T16:59:34Z1794-91652256-4314http://hdl.handle.net/10784/31020Deep learning has become increasingly popular and widely applied to computer vision systems. Over the years, researchers have developed various deep learning architectures to solve different kinds of problems. However, these networks are power-hungry and require high-performance computing (i.e., GPU, TPU, etc.) to run appropriately. Moving computation to the cloud may result in traffic, latency, and privacy issues. Edge computing can solve these challenges by moving the computing closer to the edge where the data is generated. One major challenge is to fit the high resource demands of deep learning in less powerful edge computing devices. In this research, we present an implementation of an embedded facial recognition system on a low cost Raspberry Pi, which is based on the FaceNet architecture. For this implementation it was required the development of a library in C++, which allows the deployment of the inference of the Neural Network Architecture. The system had an accuracy and precision of 77.38% and 81.25%, respectively. The time of execution of the program is 11 seconds and it consumes 46 [kB] of RAM. The resulting system could be utilized as a stand-alone access control system. The implemented model and library are released at https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystemEl aprendizaje profundo se ha vuelto cada vez más popular y se aplica ampliamente a los sistemas de visión por computadora. A lo largo de los años, los investigadores han desarrollado varias arquitecturas de aprendizaje profundo para resolver diferentes tipos de problemas. Sin embargo, estas redes consumen mucha energía y requieren computación de alto rendimiento (es decir, GPU, TPU, etc.) para funcionar correctamente. Mover la computación a la nube puede resultar en problemas de tráfico, latencia y privacidad. La computación en el borde puede resolver estos desafíos, pues permite acercar el proceso de computación al lugar donde se generan los datos. Un desafío importante es adaptar las altas demandas de recursos del aprendizaje profundo a dispositivos de computación de borde menos potentes. En esta investigación, presentamos una implementación de un sistema de reconocimiento facial integrado en una Raspberry Pi de bajo costo, la cual está basada en la red FaceNet. Esta implementación requirió el desarrollo de una biblioteca en C++ que puede describir la inferencia de la arquitectura de la red neuronal FaceNet. El sistema tuvo una exactitud y precisión de 77.38% y del 81.25 %, respectivamente. El tiempo de ejecución de cada inferencia es de 11 segundos y consume 46 [kB] de RAM. El sistema resultante podría utilizarse como un sistema de control de acceso independiente. El modelo y la librería implementados están disponibles en https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem.application/pdfengUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6996Copyright © 2021 Cristian Miranda Orostegui, Alejandro Navarro Luna, Andrés Manjarrés García, Carlos Augusto Fajardo ArizaAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)A Low-Cost Raspberry Pi-based System for Facial RecognitionSistema de reconocimiento facial sin reentrenamiento para nuevos usuariosinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Deep learningfacial recognitionembedded systemsFaceNetGoogLeNetLabeled Faces in the WildDeep learningreconocimiento facialsistemas embebidossystemsFaceNetFaceNetGoogLeNetLabeled Faces in the WildMiranda Orostegui, CristianNavarro Luna, AlejandroManjarés García, AlejandroFajardo Ariza, Carlos AugustoUniversidad Industrial de SantaderUniversidad Industrial de SantanderInstituto Nacional de Astrofísica, Óptica y ElectrónicaUniversidad Industrial de SantanderIngeniería y Ciencia17347795ORIGINALA Low-Cost Raspberry.pdfA Low-Cost Raspberry.pdfTexto completo PDFapplication/pdf1114749https://repository.eafit.edu.co/bitstreams/d0eab7d3-5655-41d4-9b0a-97f967850fac/download9d785f8cae9421d5ff2ef6aebeb3e3f2MD51A Low-Cost Raspberry Pi-based.htmlA Low-Cost Raspberry Pi-based.htmlTexto completo HTMLtext/html292https://repository.eafit.edu.co/bitstreams/95ca2a67-84ea-40b4-8ece-498062c8d42f/downloadae0ee509c0e8778f1de7b3bdbe076d54MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/afdfa5c7-d122-4269-8057-d6b84b2d215b/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/31020oai:repository.eafit.edu.co:10784/310202022-05-16 02:38:58.584open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |