Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)

The field of special functions has had a great development in recent decades since there are many phenomena that can be studied by using them, such as related stochastic processes, operations research, quantum theory, functional equations, plate vibration, heat conduction, elasticity, and radiation....

Full description

Autores:
Castillo Pérez, Jaime
Jiménez Ruiz, Carlos
Tipo de recurso:
Fecha de publicación:
2006
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/14554
Acceso en línea:
http://hdl.handle.net/10784/14554
Palabra clave:
Generalized Hypergeometric Function
Simple Representations
Función Hipergeométrica Generalizada
Representaciones Simples
Rights
License
Copyright (c) 2006 Jaime Castillo Pérez, Carlos Jiménez Ruiz
id REPOEAFIT2_8bfd56951b96d69e86f52654c5132f94
oai_identifier_str oai:repository.eafit.edu.co:10784/14554
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2006-12-012019-11-22T19:18:48Z2006-12-012019-11-22T19:18:48Z2256-43141794-9165http://hdl.handle.net/10784/14554The field of special functions has had a great development in recent decades since there are many phenomena that can be studied by using them, such as related stochastic processes, operations research, quantum theory, functional equations, plate vibration, heat conduction, elasticity, and radiation. This paper considers an extension of the theories presented by M. Dotsenko in 1991, who introduced the generalization of the Gage hypergeometric function, denoted by 2R1τ (z), and established its representation in series and integral. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introducing a set of recurrence and differentiation formulas. In this work some simple representations for the function 2R1τ (a, b; c; τ; z) are established, which will be very useful in future investigations since they allow simplifying calculations when solving problems involving this function.El campo de las funciones especiales ha tenido un gran desarrollo en las últimas décadas dado que son muchos los fenómenos que se pueden estudiar mediante el uso de las mismas como, por ejemplo, procesos estocásticos relacionados, investigación de operaciones, teoría cuántica, ecuaciones funcionales, vibración de placas, conducción del calor, elasticidad, y radiación. En este trabajo se considera una ampliación de las teorías presentadas por M. Dotsenko en 1991, quien introdujo la generalización de la función hipergeométrica de Gauss, denotada por 2R1τ (z), y estableció su representación en serie e integral. Es importante notar que en 1999 Nina Virchenko y luego, en el 2003, Leda Galué consideraron esta función, introduciendo un conjunto de fórmulas de recurrencia y de diferenciación. En este trabajo se establecen algunas representaciones simples para la función 2R1τ (a, b; c; τ; z), las cuales serán muy útiles en futuras investigaciones puesto que permiten simplificar cálculos en el momento de solucionar problemas que involucren esta función.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/464http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/464Copyright (c) 2006 Jaime Castillo Pérez, Carlos Jiménez RuizAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 2, No 4 (2006)Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)Algunas representaciones simples de la función hipergeométrica generalizada 2R1 (a, b; c; T; x)articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Generalized Hypergeometric FunctionSimple RepresentationsFunción Hipergeométrica GeneralizadaRepresentaciones SimplesCastillo Pérez, JaimeJiménez Ruiz, CarlosUniversidad de la GuajiraIngeniería y Ciencia247594ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/9153250d-b49c-4615-8591-2989c8d57076/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument (3).pdfdocument (3).pdfTexto completo PDFapplication/pdf206676https://repository.eafit.edu.co/bitstreams/e9b846eb-9b00-47eb-8987-4217f0735a84/download1b3c42fd8b81b082ee7c57293ce07857MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/8a3ce728-e5cf-428f-8578-edc7637a887c/downloadaddaa290053fd610627436ea81b60582MD5310784/14554oai:repository.eafit.edu.co:10784/145542020-03-02 23:28:51.367open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
dc.title.spa.fl_str_mv Algunas representaciones simples de la función hipergeométrica generalizada 2R1 (a, b; c; T; x)
title Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
spellingShingle Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
Generalized Hypergeometric Function
Simple Representations
Función Hipergeométrica Generalizada
Representaciones Simples
title_short Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
title_full Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
title_fullStr Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
title_full_unstemmed Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
title_sort Some simple representations of the generalized hypergeometric function 2R1 (a, b; b; c; s; x)
dc.creator.fl_str_mv Castillo Pérez, Jaime
Jiménez Ruiz, Carlos
dc.contributor.author.spa.fl_str_mv Castillo Pérez, Jaime
Jiménez Ruiz, Carlos
dc.contributor.affiliation.spa.fl_str_mv Universidad de la Guajira
dc.subject.keyword.eng.fl_str_mv Generalized Hypergeometric Function
Simple Representations
topic Generalized Hypergeometric Function
Simple Representations
Función Hipergeométrica Generalizada
Representaciones Simples
dc.subject.keyword.spa.fl_str_mv Función Hipergeométrica Generalizada
Representaciones Simples
description The field of special functions has had a great development in recent decades since there are many phenomena that can be studied by using them, such as related stochastic processes, operations research, quantum theory, functional equations, plate vibration, heat conduction, elasticity, and radiation. This paper considers an extension of the theories presented by M. Dotsenko in 1991, who introduced the generalization of the Gage hypergeometric function, denoted by 2R1τ (z), and established its representation in series and integral. It is important to note that in 1999 Nina Virchenko and then, in 2003, Leda Galué considered this function, introducing a set of recurrence and differentiation formulas. In this work some simple representations for the function 2R1τ (a, b; c; τ; z) are established, which will be very useful in future investigations since they allow simplifying calculations when solving problems involving this function.
publishDate 2006
dc.date.issued.none.fl_str_mv 2006-12-01
dc.date.available.none.fl_str_mv 2019-11-22T19:18:48Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:18:48Z
dc.date.none.fl_str_mv 2006-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14554
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14554
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/464
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/464
dc.rights.eng.fl_str_mv Copyright (c) 2006 Jaime Castillo Pérez, Carlos Jiménez Ruiz
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2006 Jaime Castillo Pérez, Carlos Jiménez Ruiz
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 2, No 4 (2006)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/9153250d-b49c-4615-8591-2989c8d57076/download
https://repository.eafit.edu.co/bitstreams/e9b846eb-9b00-47eb-8987-4217f0735a84/download
https://repository.eafit.edu.co/bitstreams/8a3ce728-e5cf-428f-8578-edc7637a887c/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
1b3c42fd8b81b082ee7c57293ce07857
addaa290053fd610627436ea81b60582
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110312578678784