The Max-p-region problem

In this paper, we introduce a new spatially constrained clustering problem called the max-p-regions problem. It involves the clustering of a set of geographic areas into the maximum number of homogeneous regions such that the value of a spatially extensive regional attribute is above a predefined th...

Full description

Autores:
Duque, Juan C.
Ansellin, Luc
Rey, Sergio
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/4988
Acceso en línea:
http://hdl.handle.net/10784/4988
Palabra clave:
Spatial Clustering
MIP modelling
Rights
License
Wiley
id REPOEAFIT2_897382754ca5ef35fc42459086f907dc
oai_identifier_str oai:repository.eafit.edu.co:10784/4988
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv The Max-p-region problem
title The Max-p-region problem
spellingShingle The Max-p-region problem
Spatial Clustering
MIP modelling
title_short The Max-p-region problem
title_full The Max-p-region problem
title_fullStr The Max-p-region problem
title_full_unstemmed The Max-p-region problem
title_sort The Max-p-region problem
dc.creator.fl_str_mv Duque, Juan C.
Ansellin, Luc
Rey, Sergio
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Economía y Finanzas
dc.contributor.eafitauthor.spa.fl_str_mv Duque, Juan C. (jduquec1@eafit.edu.co)
dc.contributor.author.spa.fl_str_mv Duque, Juan C.
Ansellin, Luc
Rey, Sergio
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT. Escuela de Economía y Finanzas. Research in Spatial Economics (RiSE), Carrera 49 7 Sur-50, Medellín, Colombia.
GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287-5302
dc.contributor.program.eng.fl_str_mv Research in Spatial Economics (RiSE)
dc.contributor.researchgroup.eng.fl_str_mv Research in Spatial Economics (RISE)
dc.subject.keyword.eng.fl_str_mv Spatial Clustering
MIP modelling
topic Spatial Clustering
MIP modelling
description In this paper, we introduce a new spatially constrained clustering problem called the max-p-regions problem. It involves the clustering of a set of geographic areas into the maximum number of homogeneous regions such that the value of a spatially extensive regional attribute is above a predefined threshold value.We formulate the max-p-regions problem as a mixed integer programming (MIP) problem, and propose a heuristic solution.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-08
dc.date.available.none.fl_str_mv 2015-02-11T19:08:19Z
dc.date.accessioned.none.fl_str_mv 2015-02-11T19:08:19Z
dc.date.none.fl_str_mv 2012-08
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1467-9787
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/4988
dc.identifier.doi.none.fl_str_mv 10.1111/j.1467-9787.2011.00743.x
identifier_str_mv 1467-9787
10.1111/j.1467-9787.2011.00743.x
url http://hdl.handle.net/10784/4988
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.eng.fl_str_mv Journal of Regional Science, Volume 52, Issue 3, pages 397–419
dc.relation.isversionof.none.fl_str_mv http://dx.doi.org/10.1111/j.1467-9787.2011.00743.x
dc.rights.spa.fl_str_mv Wiley
© 2011, Wiley Periodicals, Inc
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.local.spa.fl_str_mv Acceso restringido
rights_invalid_str_mv Wiley
© 2011, Wiley Periodicals, Inc
Acceso restringido
http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Wiley-Blackwell
publisher.none.fl_str_mv Wiley-Blackwell
dc.source.none.fl_str_mv Journal of Regional Science, Volume 52, Issue 3, pages 397–419
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/1701553a-87c2-487f-ab96-dabcf36dbbcd/download
https://repository.eafit.edu.co/bitstreams/cc7a7d05-2dfe-43cc-88e2-1ef8c930fd6a/download
https://repository.eafit.edu.co/bitstreams/98e04fab-fc8a-49fc-8b80-84037af50c3b/download
https://repository.eafit.edu.co/bitstreams/2380c4e1-da5f-4a71-b4fd-5baed06faa84/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
62f85128dc595d4d7be2f311c2759d70
1689e550c19a7877660c503b62daa157
6427df1517db564424ad0c524a8f2314
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102406598098944
spelling 2012-082015-02-11T19:08:19Z2012-082015-02-11T19:08:19Z1467-9787http://hdl.handle.net/10784/498810.1111/j.1467-9787.2011.00743.xIn this paper, we introduce a new spatially constrained clustering problem called the max-p-regions problem. It involves the clustering of a set of geographic areas into the maximum number of homogeneous regions such that the value of a spatially extensive regional attribute is above a predefined threshold value.We formulate the max-p-regions problem as a mixed integer programming (MIP) problem, and propose a heuristic solution.engWiley-BlackwellJournal of Regional Science, Volume 52, Issue 3, pages 397–419http://dx.doi.org/10.1111/j.1467-9787.2011.00743.xWiley© 2011, Wiley Periodicals, IncAcceso restringidohttp://purl.org/coar/access_right/c_16ecJournal of Regional Science, Volume 52, Issue 3, pages 397–419The Max-p-region problemarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Spatial ClusteringMIP modellingUniversidad EAFIT. Departamento de Economía y FinanzasDuque, Juan C. (jduquec1@eafit.edu.co)Duque, Juan C.958ae275-e0cf-4804-a01f-2b6b3aea1571-1Ansellin, Luc9e3f35b1-b335-4e85-9028-65712c88e9d2-1Rey, Sergio7112c1dd-bc7b-41d6-a415-98cbd3418e78-1Duque, J.C. (jduquec1@eafit.edu.co)Ansellin, Luc (luc.anselin@asu.edu)Rey, Sergio (srey@asu.edu)Universidad EAFIT. Escuela de Economía y Finanzas. Research in Spatial Economics (RiSE), Carrera 49 7 Sur-50, Medellín, Colombia.GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287-5302Research in Spatial Economics (RiSE)Research in Spatial Economics (RISE)Journal of Regional Science523397419LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/1701553a-87c2-487f-ab96-dabcf36dbbcd/download76025f86b095439b7ac65b367055d40cMD51ORIGINALarticulo.pdfarticulo.pdfapplication/pdf654081https://repository.eafit.edu.co/bitstreams/cc7a7d05-2dfe-43cc-88e2-1ef8c930fd6a/download62f85128dc595d4d7be2f311c2759d70MD52articulo.htmlarticulo.htmltext/html296https://repository.eafit.edu.co/bitstreams/98e04fab-fc8a-49fc-8b80-84037af50c3b/download1689e550c19a7877660c503b62daa157MD53Journal of Regional Science - 2011 - Duque - THE MAX‐P‐REGIONS PROBLEM (1).pdfJournal of Regional Science - 2011 - Duque - THE MAX‐P‐REGIONS PROBLEM (1).pdfapplication/pdf636031https://repository.eafit.edu.co/bitstreams/2380c4e1-da5f-4a71-b4fd-5baed06faa84/download6427df1517db564424ad0c524a8f2314MD5410784/4988oai:repository.eafit.edu.co:10784/49882024-12-04 11:48:39.191open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK