Product of independent random variables involving inverted hypergeometric function type I variables

The type I inverted hypergeometric function distribution has the probability density function proportional to [formula] where 2F1 is the Gaussian hypergeometric function. In this article, the product probability density function is derived from two independent random variables that are distributed a...

Full description

Autores:
Zarrazola, Edwin
Krishna Nagar, Daya
Tipo de recurso:
Fecha de publicación:
2009
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14503
Acceso en línea:
http://hdl.handle.net/10784/14503
Palabra clave:
Appell'S First Hypergeometric Function
Beta Distribution
Humbert Confluent Hypergeometric Function
Gauss Hypergeometric Function
Product
Transformation
Primera Función Hipergeométrica De Appell
Distribución Beta
Función Hipergeométrica Confluente De Humbert
Función Hipergeométrica De Gauss
Producto
Transformación
Rights
License
Copyright (c) 2009 Edwin Zarrazola, Daya Krishna Nagar
id REPOEAFIT2_88a21c82003a1a133a4d5a46d7427b52
oai_identifier_str oai:repository.eafit.edu.co:10784/14503
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2009-12-012019-11-22T19:06:21Z2009-12-012019-11-22T19:06:21Z2256-43141794-9165http://hdl.handle.net/10784/14503The type I inverted hypergeometric function distribution has the probability density function proportional to [formula] where 2F1 is the Gaussian hypergeometric function. In this article, the product probability density function is derived from two independent random variables that are distributed according to the inverse hypergeometric type I function. Other products are also considered among random variables with beta distribution type I, beta type II, beta type III , hypergeometric function type I, inverse hypergeometric function type I and Kummer – beta.La distribución de función hipergeométrica invertida tipo I tiene la función de densidad de probabilidad proporcional a [fórmula] donde 2F1 es la función hipergeométrica de Gauss. En este artículo se deriva la función de densidad de probabilidad del producto de dos variables aleatorias independientes que se distribuyen según la función hipergeométrica inversa tipo I. También se consideran otros productos entre variables aleatorias con distribución beta tipo I, beta tipo II, beta tipo III, función hipergeométrica tipo I, función hipergeométrica inversa tipo I y Kummer–beta.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57Copyright (c) 2009 Edwin Zarrazola, Daya Krishna NagarAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 5, No 10 (2009)Product of independent random variables involving inverted hypergeometric function type I variablesProducto de variables aleatorias independentes que involucran variables con función hipergeométrica invertida de tipo Iarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Appell'S First Hypergeometric FunctionBeta DistributionHumbert Confluent Hypergeometric FunctionGauss Hypergeometric FunctionProductTransformationPrimera Función Hipergeométrica De AppellDistribución BetaFunción Hipergeométrica Confluente De HumbertFunción Hipergeométrica De GaussProductoTransformaciónZarrazola, EdwinKrishna Nagar, DayaUniversidad de AntioquiaIngeniería y Ciencia51093106ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/a16b1e36-f7ab-42a3-baaf-ace4b4d068d1/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL5.pdf5.pdfTexto completo PDFapplication/pdf169151https://repository.eafit.edu.co/bitstreams/7b031b49-d0f6-455e-9283-92d9ae3b1156/download0cfb029c3730066313a6174ffa1f1ae3MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html372https://repository.eafit.edu.co/bitstreams/25eefe7e-7cd2-4585-9f99-8d2222e4d727/download441c3e20d3ff595c86bea96ce2c4e445MD5310784/14503oai:repository.eafit.edu.co:10784/145032020-03-02 22:35:34.909open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Product of independent random variables involving inverted hypergeometric function type I variables
dc.title.spa.fl_str_mv Producto de variables aleatorias independentes que involucran variables con función hipergeométrica invertida de tipo I
title Product of independent random variables involving inverted hypergeometric function type I variables
spellingShingle Product of independent random variables involving inverted hypergeometric function type I variables
Appell'S First Hypergeometric Function
Beta Distribution
Humbert Confluent Hypergeometric Function
Gauss Hypergeometric Function
Product
Transformation
Primera Función Hipergeométrica De Appell
Distribución Beta
Función Hipergeométrica Confluente De Humbert
Función Hipergeométrica De Gauss
Producto
Transformación
title_short Product of independent random variables involving inverted hypergeometric function type I variables
title_full Product of independent random variables involving inverted hypergeometric function type I variables
title_fullStr Product of independent random variables involving inverted hypergeometric function type I variables
title_full_unstemmed Product of independent random variables involving inverted hypergeometric function type I variables
title_sort Product of independent random variables involving inverted hypergeometric function type I variables
dc.creator.fl_str_mv Zarrazola, Edwin
Krishna Nagar, Daya
dc.contributor.author.spa.fl_str_mv Zarrazola, Edwin
Krishna Nagar, Daya
dc.contributor.affiliation.spa.fl_str_mv Universidad de Antioquia
dc.subject.keyword.eng.fl_str_mv Appell'S First Hypergeometric Function
Beta Distribution
Humbert Confluent Hypergeometric Function
Gauss Hypergeometric Function
Product
Transformation
topic Appell'S First Hypergeometric Function
Beta Distribution
Humbert Confluent Hypergeometric Function
Gauss Hypergeometric Function
Product
Transformation
Primera Función Hipergeométrica De Appell
Distribución Beta
Función Hipergeométrica Confluente De Humbert
Función Hipergeométrica De Gauss
Producto
Transformación
dc.subject.keyword.spa.fl_str_mv Primera Función Hipergeométrica De Appell
Distribución Beta
Función Hipergeométrica Confluente De Humbert
Función Hipergeométrica De Gauss
Producto
Transformación
description The type I inverted hypergeometric function distribution has the probability density function proportional to [formula] where 2F1 is the Gaussian hypergeometric function. In this article, the product probability density function is derived from two independent random variables that are distributed according to the inverse hypergeometric type I function. Other products are also considered among random variables with beta distribution type I, beta type II, beta type III , hypergeometric function type I, inverse hypergeometric function type I and Kummer – beta.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009-12-01
dc.date.available.none.fl_str_mv 2019-11-22T19:06:21Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:06:21Z
dc.date.none.fl_str_mv 2009-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14503
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14503
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
dc.rights.eng.fl_str_mv Copyright (c) 2009 Edwin Zarrazola, Daya Krishna Nagar
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2009 Edwin Zarrazola, Daya Krishna Nagar
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 5, No 10 (2009)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/a16b1e36-f7ab-42a3-baaf-ace4b4d068d1/download
https://repository.eafit.edu.co/bitstreams/7b031b49-d0f6-455e-9283-92d9ae3b1156/download
https://repository.eafit.edu.co/bitstreams/25eefe7e-7cd2-4585-9f99-8d2222e4d727/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
0cfb029c3730066313a6174ffa1f1ae3
441c3e20d3ff595c86bea96ce2c4e445
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110285777076224