Product of independent random variables involving inverted hypergeometric function type I variables
The type I inverted hypergeometric function distribution has the probability density function proportional to [formula] where 2F1 is the Gaussian hypergeometric function. In this article, the product probability density function is derived from two independent random variables that are distributed a...
- Autores:
-
Zarrazola, Edwin
Krishna Nagar, Daya
- Tipo de recurso:
- Fecha de publicación:
- 2009
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14503
- Acceso en línea:
- http://hdl.handle.net/10784/14503
- Palabra clave:
- Appell'S First Hypergeometric Function
Beta Distribution
Humbert Confluent Hypergeometric Function
Gauss Hypergeometric Function
Product
Transformation
Primera Función Hipergeométrica De Appell
Distribución Beta
Función Hipergeométrica Confluente De Humbert
Función Hipergeométrica De Gauss
Producto
Transformación
- Rights
- License
- Copyright (c) 2009 Edwin Zarrazola, Daya Krishna Nagar
Summary: | The type I inverted hypergeometric function distribution has the probability density function proportional to [formula] where 2F1 is the Gaussian hypergeometric function. In this article, the product probability density function is derived from two independent random variables that are distributed according to the inverse hypergeometric type I function. Other products are also considered among random variables with beta distribution type I, beta type II, beta type III , hypergeometric function type I, inverse hypergeometric function type I and Kummer – beta. |
---|