Product of independent random variables involving inverted hypergeometric function type I variables

The type I inverted hypergeometric function distribution has the probability density function proportional to [formula] where 2F1 is the Gaussian hypergeometric function. In this article, the product probability density function is derived from two independent random variables that are distributed a...

Full description

Autores:
Zarrazola, Edwin
Krishna Nagar, Daya
Tipo de recurso:
Fecha de publicación:
2009
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14503
Acceso en línea:
http://hdl.handle.net/10784/14503
Palabra clave:
Appell'S First Hypergeometric Function
Beta Distribution
Humbert Confluent Hypergeometric Function
Gauss Hypergeometric Function
Product
Transformation
Primera Función Hipergeométrica De Appell
Distribución Beta
Función Hipergeométrica Confluente De Humbert
Función Hipergeométrica De Gauss
Producto
Transformación
Rights
License
Copyright (c) 2009 Edwin Zarrazola, Daya Krishna Nagar
Description
Summary:The type I inverted hypergeometric function distribution has the probability density function proportional to [formula] where 2F1 is the Gaussian hypergeometric function. In this article, the product probability density function is derived from two independent random variables that are distributed according to the inverse hypergeometric type I function. Other products are also considered among random variables with beta distribution type I, beta type II, beta type III , hypergeometric function type I, inverse hypergeometric function type I and Kummer – beta.