Product and Quotient of Independent Gauss Hypergeometric Variables
In this article, we have derived the probability density functions of the product and the quotient of two independent random variables that have a hypergeometric Gaussian distribution. These densities have been expressed in terms of the first hypergeometric function of Appell F1. In addition, Rényi...
- Autores:
-
Krishna Nagar, Daya
Bedoya Valencia, Danilo
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14462
- Acceso en línea:
- http://hdl.handle.net/10784/14462
- Palabra clave:
- First Appell Hypergeometric Function
Beta Distribution
Gauss Hypergeometric Distribution
Quotient
Transformation
Primera Función Hipergeométrica Appell
Beta Distribución
La Distribución Hipergeométrica De Gauss
Cociente
Transformación
- Rights
- License
- Copyright (c) 2011 Daya Krishna Nagar, Danilo Bedoya Valencia
Summary: | In this article, we have derived the probability density functions of the product and the quotient of two independent random variables that have a hypergeometric Gaussian distribution. These densities have been expressed in terms of the first hypergeometric function of Appell F1. In addition, Rényi and Shannon entropies have also been derived from the Gage hypergeometric distribution. |
---|