Product and Quotient of Independent Gauss Hypergeometric Variables

In this article, we have derived the probability density functions of the product and the quotient of two independent random variables that have a hypergeometric Gaussian distribution. These densities have been expressed in terms of the first hypergeometric function of Appell F1. In addition, Rényi...

Full description

Autores:
Krishna Nagar, Daya
Bedoya Valencia, Danilo
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14462
Acceso en línea:
http://hdl.handle.net/10784/14462
Palabra clave:
First Appell Hypergeometric Function
Beta Distribution
Gauss Hypergeometric Distribution
Quotient
Transformation
Primera Función Hipergeométrica Appell
Beta Distribución
La Distribución Hipergeométrica De Gauss
Cociente
Transformación
Rights
License
Copyright (c) 2011 Daya Krishna Nagar, Danilo Bedoya Valencia
Description
Summary:In this article, we have derived the probability density functions of the product and the quotient of two independent random variables that have a hypergeometric Gaussian distribution. These densities have been expressed in terms of the first hypergeometric function of Appell F1. In addition, Rényi and Shannon entropies have also been derived from the Gage hypergeometric distribution.