Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering
Algorithms based on the unscented Kalman filter (UKF) have been proposed as an alternative for registration of point clouds obtained from vertebral ultrasound (US) and computerised tomography (CT) scans, effectively handling the US limited depth and low signaltonoise ratio -- Previously proposed met...
- Autores:
-
Echeverría, Rebeca
Cortes, Camilo
Bertelsen, Alvaro
Macia, Ivan
Ruíz, Óscar E.
Flórez, Julián
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9793
- Acceso en línea:
- http://hdl.handle.net/10784/9793
- Palabra clave:
- TOMOGRAFÍA
FILTRACIÓN KALMAN
ULTRASONIDO EN MEDICINA
MODELOS MATEMÁTICOS
ECUACIONES DIFERENCIALES
PROCESAMIENTO DE IMÁGENES
Tomography
Kalman filtering
Ultrasonics in medicine
Mathematical models
Differential equations
Image processing
Nube de puntos
Imagen médica multimodal
Métodos computacionales
- Rights
- License
- Acceso cerrado
id |
REPOEAFIT2_869f8f1480f4e83494020bff9221e1d5 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9793 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering |
title |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering |
spellingShingle |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering TOMOGRAFÍA FILTRACIÓN KALMAN ULTRASONIDO EN MEDICINA MODELOS MATEMÁTICOS ECUACIONES DIFERENCIALES PROCESAMIENTO DE IMÁGENES Tomography Kalman filtering Ultrasonics in medicine Mathematical models Differential equations Image processing Nube de puntos Imagen médica multimodal Métodos computacionales |
title_short |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering |
title_full |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering |
title_fullStr |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering |
title_full_unstemmed |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering |
title_sort |
Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering |
dc.creator.fl_str_mv |
Echeverría, Rebeca Cortes, Camilo Bertelsen, Alvaro Macia, Ivan Ruíz, Óscar E. Flórez, Julián |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Echeverría, Rebeca Cortes, Camilo Bertelsen, Alvaro Macia, Ivan Ruíz, Óscar E. Flórez, Julián |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
TOMOGRAFÍA FILTRACIÓN KALMAN ULTRASONIDO EN MEDICINA MODELOS MATEMÁTICOS ECUACIONES DIFERENCIALES PROCESAMIENTO DE IMÁGENES |
topic |
TOMOGRAFÍA FILTRACIÓN KALMAN ULTRASONIDO EN MEDICINA MODELOS MATEMÁTICOS ECUACIONES DIFERENCIALES PROCESAMIENTO DE IMÁGENES Tomography Kalman filtering Ultrasonics in medicine Mathematical models Differential equations Image processing Nube de puntos Imagen médica multimodal Métodos computacionales |
dc.subject.keyword.eng.fl_str_mv |
Tomography Kalman filtering Ultrasonics in medicine Mathematical models Differential equations Image processing |
dc.subject.keyword.spa.fl_str_mv |
Nube de puntos Imagen médica multimodal Métodos computacionales |
description |
Algorithms based on the unscented Kalman filter (UKF) have been proposed as an alternative for registration of point clouds obtained from vertebral ultrasound (US) and computerised tomography (CT) scans, effectively handling the US limited depth and low signaltonoise ratio -- Previously proposed methods are accurate, but their convergence rate is considerably reduced with initial misalignments of the datasets greater than or 30 mm -- We propose a novel method which increases robustness by adding a coarse alignment of the datasets’ principal components and batchbased point inclusions for the UKF -- Experiments with simulated scans with full coverage of a single vertebra show the method’s capability and accuracy to correct misalignments as large as and 90 mm -- Furthermore, the method registers datasets with varying degrees of missing data and datasets with outlier points coming from adjacent vertebrae |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016-11-30T15:56:58Z |
dc.date.issued.none.fl_str_mv |
2016-07 |
dc.date.accessioned.none.fl_str_mv |
2016-11-30T15:56:58Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/bookPart bookPart info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.local.spa.fl_str_mv |
Capítulo o parte de un libro |
dc.type.hasVersion.spa.fl_str_mv |
Obra publicada |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
@Inbook{Echeverri2016, author={Echeverria, Rebeca and Cortes, Camilo and Bertelsen, Alvaro and Macia, Ivan and Ruiz, Oscar E. and Florez, Julian}, editor={Vrtovec, Tomaz and Yao, Jianhua and Glocker, Ben and Klinder, Tobias and Frangi, Alejandro and Zheng, Guoyan and Li, Shuo}, title={Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering}, bookTitle={Computational Methods and Clinical Applications for Spine Imaging: Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings}, year={2016}, publisher={Springer International Publishing}, address={Cham}, pages={52--63}, isbn={978-3-319-41827-8}, doi={10.1007/978-3-319-41827-8_5}, url={http://dx.doi.org/10.1007/978-3-319-41827-8_5} |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9793 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-41827-8_5 |
identifier_str_mv |
@Inbook{Echeverri2016, author={Echeverria, Rebeca and Cortes, Camilo and Bertelsen, Alvaro and Macia, Ivan and Ruiz, Oscar E. and Florez, Julian}, editor={Vrtovec, Tomaz and Yao, Jianhua and Glocker, Ben and Klinder, Tobias and Frangi, Alejandro and Zheng, Guoyan and Li, Shuo}, title={Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering}, bookTitle={Computational Methods and Clinical Applications for Spine Imaging: Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings}, year={2016}, publisher={Springer International Publishing}, address={Cham}, pages={52--63}, isbn={978-3-319-41827-8}, doi={10.1007/978-3-319-41827-8_5}, url={http://dx.doi.org/10.1007/978-3-319-41827-8_5} 10.1007/978-3-319-41827-8_5 |
url |
http://hdl.handle.net/10784/9793 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Computational Methods and Clinical Applications for Spine Imaging |
dc.relation.isversionof.spa.fl_str_mv |
https://doi.org/10.1007/978-3-319-41827-8_5 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.local.spa.fl_str_mv |
Acceso cerrado |
rights_invalid_str_mv |
Acceso cerrado http://purl.org/coar/access_right/c_14cb |
dc.format.eng.fl_str_mv |
application/pdf |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/a8fba452-c301-4852-81c1-a820358bf84b/download https://repository.eafit.edu.co/bitstreams/f19538c7-dc78-4e60-aae2-7a5bfeeb42e0/download https://repository.eafit.edu.co/bitstreams/643b5b14-dab3-4b8d-b806-7f74ef1e5b15/download |
bitstream.checksum.fl_str_mv |
7abc15214f17de653f8018bcbbd849ea 7a2033d9cb138452fb112dfc6d5ac9be 76025f86b095439b7ac65b367055d40c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102416328884224 |
spelling |
2016-11-30T15:56:58Z2016-072016-11-30T15:56:58Z@Inbook{Echeverri2016, author={Echeverria, Rebeca and Cortes, Camilo and Bertelsen, Alvaro and Macia, Ivan and Ruiz, Oscar E. and Florez, Julian}, editor={Vrtovec, Tomaz and Yao, Jianhua and Glocker, Ben and Klinder, Tobias and Frangi, Alejandro and Zheng, Guoyan and Li, Shuo}, title={Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering}, bookTitle={Computational Methods and Clinical Applications for Spine Imaging: Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings}, year={2016}, publisher={Springer International Publishing}, address={Cham}, pages={52--63}, isbn={978-3-319-41827-8}, doi={10.1007/978-3-319-41827-8_5}, url={http://dx.doi.org/10.1007/978-3-319-41827-8_5}http://hdl.handle.net/10784/979310.1007/978-3-319-41827-8_5Algorithms based on the unscented Kalman filter (UKF) have been proposed as an alternative for registration of point clouds obtained from vertebral ultrasound (US) and computerised tomography (CT) scans, effectively handling the US limited depth and low signaltonoise ratio -- Previously proposed methods are accurate, but their convergence rate is considerably reduced with initial misalignments of the datasets greater than or 30 mm -- We propose a novel method which increases robustness by adding a coarse alignment of the datasets’ principal components and batchbased point inclusions for the UKF -- Experiments with simulated scans with full coverage of a single vertebra show the method’s capability and accuracy to correct misalignments as large as and 90 mm -- Furthermore, the method registers datasets with varying degrees of missing data and datasets with outlier points coming from adjacent vertebraepp.52 - 63application/pdfengComputational Methods and Clinical Applications for Spine Imaginghttps://doi.org/10.1007/978-3-319-41827-8_5Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filteringinfo:eu-repo/semantics/bookPartbookPartinfo:eu-repo/semantics/publishedVersionpublishedVersionCapítulo o parte de un libroObra publicadahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Acceso cerradohttp://purl.org/coar/access_right/c_14cbTOMOGRAFÍAFILTRACIÓN KALMANULTRASONIDO EN MEDICINAMODELOS MATEMÁTICOSECUACIONES DIFERENCIALESPROCESAMIENTO DE IMÁGENESTomographyKalman filteringUltrasonics in medicineMathematical modelsDifferential equationsImage processingNube de puntosImagen médica multimodalMétodos computacionalesUniversidad EAFIT. Departamento de Ingeniería MecánicaEcheverría, Rebecaeb78384e-4e95-4ed6-b82a-9793629619ba-1Cortes, Camilo3d4f0ac7-106e-4fc5-9477-dba9ac7245b6-1Bertelsen, Alvaroa8d8274e-3d71-43e0-a2d8-1f9ccaf6922e-1Macia, Ivan94e64248-d5ad-4917-ba26-d739c5b09000-1Ruíz, Óscar E.79da89a9-56e7-4e32-9960-e465497e926e-1Flórez, Juliána5bca711-746a-43ec-91c2-52025d81daa2-1Laboratorio CAD/CAM/CAEORIGINALRobust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering - Springer.pdfRobust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering - Springer.pdfapplication/pdf278436https://repository.eafit.edu.co/bitstreams/a8fba452-c301-4852-81c1-a820358bf84b/download7abc15214f17de653f8018bcbbd849eaMD522016_ChBook_Robust_CT_SpringerSite.pdf2016_ChBook_Robust_CT_SpringerSite.pdfapplication/pdf436661https://repository.eafit.edu.co/bitstreams/f19538c7-dc78-4e60-aae2-7a5bfeeb42e0/download7a2033d9cb138452fb112dfc6d5ac9beMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/643b5b14-dab3-4b8d-b806-7f74ef1e5b15/download76025f86b095439b7ac65b367055d40cMD5310784/9793oai:repository.eafit.edu.co:10784/97932024-12-04 11:49:11.851restrictedhttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK |