Universality of geometric quantum computing three-state model
The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R...
- Autores:
-
Sicard, Andrés
Vélez, Mario Elkin
- Tipo de recurso:
- Fecha de publicación:
- 2005
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14575
- Acceso en línea:
- http://hdl.handle.net/10784/14575
- Palabra clave:
- Geometric Quantum Computing
Universal Quantum Gates
Three-State Model
Computación Cuántica Geométrica
Compuertas Cuánticas Universales
Modelo De Tres Estados
- Rights
- License
- Copyright (c) 2005 Andrés Sicard, Mario Elkin Vélez
id |
REPOEAFIT2_85e57b69991fbd2f5b7546dfb07cd4aa |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14575 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2005-04-012019-11-22T19:22:14Z2005-04-012019-11-22T19:22:14Z2256-43141794-9165http://hdl.handle.net/10784/14575The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R (α) rotation gates, and the Hadamard H and B phase (η) gates ), respectively. For each gate, it is explicitly presented operator Holonomy ΓAy (γ) and γ cycle on which it is constructed.El modelo de tres estados es un modelo de computación cuántica geométrica. Se ilustra que éste es un modelo de computación cuántica universal, con base en el trabajo desarrollado por Niskanen, Nakahara y Salomaa [16]. Las universalidades U(2) y U(2n≥ 1) del modelo se obtienen a partir de la construcción de las compuertas de rotación Rx(α) y R(α), y de las compuertas de Hadamard H y de fase B(η), respectivamente. Para cada compuerta, se presenta explícitamente el operador de holonomía ΓAy(γ) y el ciclo γ sobre el cual es construída.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499Copyright (c) 2005 Andrés Sicard, Mario Elkin VélezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 1, No 1 (2005)Universality of geometric quantum computing three-state modelUniversalidad de la computación cuántica geométrica modelo de tres estadosarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Geometric Quantum ComputingUniversal Quantum GatesThree-State ModelComputación Cuántica GeométricaCompuertas Cuánticas UniversalesModelo De Tres EstadosSicard, AndrésVélez, Mario ElkinUniversidad EAFITIngeniería y Ciencia11520ing.cienc.ORIGINALdocument (2).pdfdocument (2).pdfTexto completo PDFapplication/pdf250523https://repository.eafit.edu.co/bitstreams/2408d07b-0393-40fc-94b2-82b04acb094f/download2060a0246819b4bc972b0e1ccedb36edMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/ec4b4db4-f375-4821-8cca-49fddd6d2fce/downloadf5bab757878eed125a575651e58dcd80MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/870be4a7-3e62-4ea8-b6f2-b6ca015f9ddd/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/14575oai:repository.eafit.edu.co:10784/145752020-02-11 20:27:23.222open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Universality of geometric quantum computing three-state model |
dc.title.spa.fl_str_mv |
Universalidad de la computación cuántica geométrica modelo de tres estados |
title |
Universality of geometric quantum computing three-state model |
spellingShingle |
Universality of geometric quantum computing three-state model Geometric Quantum Computing Universal Quantum Gates Three-State Model Computación Cuántica Geométrica Compuertas Cuánticas Universales Modelo De Tres Estados |
title_short |
Universality of geometric quantum computing three-state model |
title_full |
Universality of geometric quantum computing three-state model |
title_fullStr |
Universality of geometric quantum computing three-state model |
title_full_unstemmed |
Universality of geometric quantum computing three-state model |
title_sort |
Universality of geometric quantum computing three-state model |
dc.creator.fl_str_mv |
Sicard, Andrés Vélez, Mario Elkin |
dc.contributor.author.spa.fl_str_mv |
Sicard, Andrés Vélez, Mario Elkin |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad EAFIT |
dc.subject.keyword.eng.fl_str_mv |
Geometric Quantum Computing Universal Quantum Gates Three-State Model |
topic |
Geometric Quantum Computing Universal Quantum Gates Three-State Model Computación Cuántica Geométrica Compuertas Cuánticas Universales Modelo De Tres Estados |
dc.subject.keyword.spa.fl_str_mv |
Computación Cuántica Geométrica Compuertas Cuánticas Universales Modelo De Tres Estados |
description |
The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R (α) rotation gates, and the Hadamard H and B phase (η) gates ), respectively. For each gate, it is explicitly presented operator Holonomy ΓAy (γ) and γ cycle on which it is constructed. |
publishDate |
2005 |
dc.date.issued.none.fl_str_mv |
2005-04-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T19:22:14Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T19:22:14Z |
dc.date.none.fl_str_mv |
2005-04-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14575 |
identifier_str_mv |
2256-4314 1794-9165 |
url |
http://hdl.handle.net/10784/14575 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2005 Andrés Sicard, Mario Elkin Vélez |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2005 Andrés Sicard, Mario Elkin Vélez Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 1, No 1 (2005) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/2408d07b-0393-40fc-94b2-82b04acb094f/download https://repository.eafit.edu.co/bitstreams/ec4b4db4-f375-4821-8cca-49fddd6d2fce/download https://repository.eafit.edu.co/bitstreams/870be4a7-3e62-4ea8-b6f2-b6ca015f9ddd/download |
bitstream.checksum.fl_str_mv |
2060a0246819b4bc972b0e1ccedb36ed f5bab757878eed125a575651e58dcd80 da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110631792476160 |