Universality of geometric quantum computing three-state model

The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R...

Full description

Autores:
Sicard, Andrés
Vélez, Mario Elkin
Tipo de recurso:
Fecha de publicación:
2005
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/14575
Acceso en línea:
http://hdl.handle.net/10784/14575
Palabra clave:
Geometric Quantum Computing
Universal Quantum Gates
Three-State Model
Computación Cuántica Geométrica
Compuertas Cuánticas Universales
Modelo De Tres Estados
Rights
License
Copyright (c) 2005 Andrés Sicard, Mario Elkin Vélez
id REPOEAFIT2_85e57b69991fbd2f5b7546dfb07cd4aa
oai_identifier_str oai:repository.eafit.edu.co:10784/14575
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2005-04-012019-11-22T19:22:14Z2005-04-012019-11-22T19:22:14Z2256-43141794-9165http://hdl.handle.net/10784/14575The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R (α) rotation gates, and the Hadamard H and B phase (η) gates ), respectively. For each gate, it is explicitly presented operator Holonomy ΓAy (γ) and γ cycle on which it is constructed.El modelo de tres estados es un modelo de computación cuántica geométrica. Se ilustra que éste es un modelo de computación cuántica universal, con base en el trabajo desarrollado por Niskanen, Nakahara y Salomaa [16]. Las universalidades U(2) y U(2n≥ 1) del modelo se obtienen a partir de la construcción de las compuertas de rotación Rx(α) y R(α), y de las compuertas de Hadamard H y de fase B(η), respectivamente. Para cada compuerta, se presenta explícitamente el operador de holonomía ΓAy(γ) y el ciclo γ sobre el cual es construída.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499Copyright (c) 2005 Andrés Sicard, Mario Elkin VélezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 1, No 1 (2005)Universality of geometric quantum computing three-state modelUniversalidad de la computación cuántica geométrica modelo de tres estadosarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Geometric Quantum ComputingUniversal Quantum GatesThree-State ModelComputación Cuántica GeométricaCompuertas Cuánticas UniversalesModelo De Tres EstadosSicard, AndrésVélez, Mario ElkinUniversidad EAFITIngeniería y Ciencia11520ing.cienc.ORIGINALdocument (2).pdfdocument (2).pdfTexto completo PDFapplication/pdf250523https://repository.eafit.edu.co/bitstreams/2408d07b-0393-40fc-94b2-82b04acb094f/download2060a0246819b4bc972b0e1ccedb36edMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/ec4b4db4-f375-4821-8cca-49fddd6d2fce/downloadf5bab757878eed125a575651e58dcd80MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/870be4a7-3e62-4ea8-b6f2-b6ca015f9ddd/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/14575oai:repository.eafit.edu.co:10784/145752020-02-11 20:27:23.222open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Universality of geometric quantum computing three-state model
dc.title.spa.fl_str_mv Universalidad de la computación cuántica geométrica modelo de tres estados
title Universality of geometric quantum computing three-state model
spellingShingle Universality of geometric quantum computing three-state model
Geometric Quantum Computing
Universal Quantum Gates
Three-State Model
Computación Cuántica Geométrica
Compuertas Cuánticas Universales
Modelo De Tres Estados
title_short Universality of geometric quantum computing three-state model
title_full Universality of geometric quantum computing three-state model
title_fullStr Universality of geometric quantum computing three-state model
title_full_unstemmed Universality of geometric quantum computing three-state model
title_sort Universality of geometric quantum computing three-state model
dc.creator.fl_str_mv Sicard, Andrés
Vélez, Mario Elkin
dc.contributor.author.spa.fl_str_mv Sicard, Andrés
Vélez, Mario Elkin
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT
dc.subject.keyword.eng.fl_str_mv Geometric Quantum Computing
Universal Quantum Gates
Three-State Model
topic Geometric Quantum Computing
Universal Quantum Gates
Three-State Model
Computación Cuántica Geométrica
Compuertas Cuánticas Universales
Modelo De Tres Estados
dc.subject.keyword.spa.fl_str_mv Computación Cuántica Geométrica
Compuertas Cuánticas Universales
Modelo De Tres Estados
description The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R (α) rotation gates, and the Hadamard H and B phase (η) gates ), respectively. For each gate, it is explicitly presented operator Holonomy ΓAy (γ) and γ cycle on which it is constructed.
publishDate 2005
dc.date.issued.none.fl_str_mv 2005-04-01
dc.date.available.none.fl_str_mv 2019-11-22T19:22:14Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:22:14Z
dc.date.none.fl_str_mv 2005-04-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14575
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14575
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/499
dc.rights.eng.fl_str_mv Copyright (c) 2005 Andrés Sicard, Mario Elkin Vélez
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2005 Andrés Sicard, Mario Elkin Vélez
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 1, No 1 (2005)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/2408d07b-0393-40fc-94b2-82b04acb094f/download
https://repository.eafit.edu.co/bitstreams/ec4b4db4-f375-4821-8cca-49fddd6d2fce/download
https://repository.eafit.edu.co/bitstreams/870be4a7-3e62-4ea8-b6f2-b6ca015f9ddd/download
bitstream.checksum.fl_str_mv 2060a0246819b4bc972b0e1ccedb36ed
f5bab757878eed125a575651e58dcd80
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110631792476160