Universality of geometric quantum computing three-state model
The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R...
- Autores:
-
Sicard, Andrés
Vélez, Mario Elkin
- Tipo de recurso:
- Fecha de publicación:
- 2005
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14575
- Acceso en línea:
- http://hdl.handle.net/10784/14575
- Palabra clave:
- Geometric Quantum Computing
Universal Quantum Gates
Three-State Model
Computación Cuántica Geométrica
Compuertas Cuánticas Universales
Modelo De Tres Estados
- Rights
- License
- Copyright (c) 2005 Andrés Sicard, Mario Elkin Vélez
Summary: | The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R (α) rotation gates, and the Hadamard H and B phase (η) gates ), respectively. For each gate, it is explicitly presented operator Holonomy ΓAy (γ) and γ cycle on which it is constructed. |
---|