Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding

The evolution of medicine in current times has gone hand in hand with technology where more and more solutions are implemented; those supporting certain medical procedures to serve as base in the field of medical  professionals. The process of analyzing data has become an essential resource in the p...

Full description

Autores:
Calderón-Vargas, Carlos
Muñoz Castaño, José
Vargas Rincón, María
Rincón Acosta, Víctor Manuel
Mendieta Hernández, Miguel
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/31017
Acceso en línea:
http://hdl.handle.net/10784/31017
Palabra clave:
Web design
Machine learning
training
decision trees
weka
Diseño web
Machine learning
entrenamiento
árboles de decisión
weka
Rights
License
Acceso abierto
id REPOEAFIT2_83c29c23d18b0a6102b29f553c1f2129
oai_identifier_str oai:repository.eafit.edu.co:10784/31017
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
dc.title.spa.fl_str_mv Aprendizaje profundo para escalas pronósticas en la prescripción a pacientes con riesgo de sangrado gastrointestinal
title Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
spellingShingle Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
Web design
Machine learning
training
decision trees
weka
Diseño web
Machine learning
entrenamiento
árboles de decisión
weka
title_short Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
title_full Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
title_fullStr Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
title_full_unstemmed Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
title_sort Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal Bleeding
dc.creator.fl_str_mv Calderón-Vargas, Carlos
Muñoz Castaño, José
Vargas Rincón, María
Rincón Acosta, Víctor Manuel
Mendieta Hernández, Miguel
dc.contributor.author.spa.fl_str_mv Calderón-Vargas, Carlos
Muñoz Castaño, José
Vargas Rincón, María
Rincón Acosta, Víctor Manuel
Mendieta Hernández, Miguel
dc.contributor.affiliation.spa.fl_str_mv Hospital Universitario La Samaritana
Hospital Universitario La Samaritana
Hospital Universitario La Samaritana
Universidad El Bosque
Universidad El Bosque
dc.subject.keyword.eng.fl_str_mv Web design
Machine learning
training
decision trees
weka
topic Web design
Machine learning
training
decision trees
weka
Diseño web
Machine learning
entrenamiento
árboles de decisión
weka
dc.subject.keyword.spa.fl_str_mv Diseño web
Machine learning
entrenamiento
árboles de decisión
weka
description The evolution of medicine in current times has gone hand in hand with technology where more and more solutions are implemented; those supporting certain medical procedures to serve as base in the field of medical  professionals. The process of analyzing data has become an essential resource in the practice of any profession; currently, in hospitals, more specifically in the university hospital La Samaritana. No tool allows the supporting of diagnosis to determine the supply or no, proton pump inhibitors, therefore we have developed an app using a machine learning model, based on decision trees through the weka application, which, after analyzing the data collected, allows the doctor to count with a tool to support this procedure. We hope that with this, doctors can perform an effective analysis before prescribing or not prescribing PPIs.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-01
dc.date.available.none.fl_str_mv 2022-03-23T16:59:33Z
dc.date.accessioned.none.fl_str_mv 2022-03-23T16:59:33Z
dc.date.none.fl_str_mv 2021-12-01
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
2256-4314
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/31017
identifier_str_mv 1794-9165
2256-4314
url http://hdl.handle.net/10784/31017
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6977
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6977
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/4bab7826-efb7-4f89-b037-0df6fdbf9e14/download
https://repository.eafit.edu.co/bitstreams/7f99ef05-06b6-47ff-b8ce-888cb66e26be/download
https://repository.eafit.edu.co/bitstreams/90e24c04-7c39-4f77-b9df-89c87931ce84/download
bitstream.checksum.fl_str_mv 632b0974bf65651b0e691428cc1ec828
445e92611024eca6752cbe87ef4819c6
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110260205453312
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2021-12-012022-03-23T16:59:33Z2021-12-012022-03-23T16:59:33Z1794-91652256-4314http://hdl.handle.net/10784/31017The evolution of medicine in current times has gone hand in hand with technology where more and more solutions are implemented; those supporting certain medical procedures to serve as base in the field of medical  professionals. The process of analyzing data has become an essential resource in the practice of any profession; currently, in hospitals, more specifically in the university hospital La Samaritana. No tool allows the supporting of diagnosis to determine the supply or no, proton pump inhibitors, therefore we have developed an app using a machine learning model, based on decision trees through the weka application, which, after analyzing the data collected, allows the doctor to count with a tool to support this procedure. We hope that with this, doctors can perform an effective analysis before prescribing or not prescribing PPIs.La evolución de la medicina en los tiempos actuales ha ido de la mano de la tecnología donde cada vez más se implementan soluciones que apoyan ciertos procedimientos médicos con el objetivo de apoyar el ejercicio de los profesionales de la medicina en su oficio. El procesamiento y análisis de datos se ha convertido en un recurso imprescindible en la práctica de cualquier profesión, actualmente, en los hospitales, más  puntualmente en el hospital universitario la samaritana, no se posee una herramienta que permita apoyar el  diagnóstico para determinar el suministro o no, de los inhibidores de bombas de protones, por lo tanto hemos desarrollado una aplicación web utilizando un modelo de  aprendizaje automático, basado en arboles de decisiones por medio de la aplicación weka, que luego del análisis de los datos recogidos, permita al médico contar con una herramienta para el apoyo de este procedimiento. Esperamos que con la utilización de esta aplicación los médicos puedan realizar un análisis efectivo antes de recetar o no los IBPs.application/pdfspaUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6977https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6977Copyright © 2021 Carlos Calderón-Vargas, José Muñoz Castaño, María Vargas Rincón, Víctor Manuel Rincón AcostaAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)Deep Learning for Forecast Scales to Prescribe Patients at Risk of Gastrointestinal BleedingAprendizaje profundo para escalas pronósticas en la prescripción a pacientes con riesgo de sangrado gastrointestinalinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Web designMachine learningtrainingdecision treeswekaDiseño webMachine learningentrenamientoárboles de decisiónwekaCalderón-Vargas, CarlosMuñoz Castaño, JoséVargas Rincón, MaríaRincón Acosta, Víctor ManuelMendieta Hernández, MiguelHospital Universitario La SamaritanaHospital Universitario La SamaritanaHospital Universitario La SamaritanaUniversidad El BosqueUniversidad El BosqueIngeniería y Ciencia1734722ORIGINALDeep Learning for Forecast Scales.pdfDeep Learning for Forecast Scales.pdfTexto completo PDFapplication/pdf576316https://repository.eafit.edu.co/bitstreams/4bab7826-efb7-4f89-b037-0df6fdbf9e14/download632b0974bf65651b0e691428cc1ec828MD51Deep Learning for Forecast.htmlDeep Learning for Forecast.htmlTexto completo HTMLtext/html292https://repository.eafit.edu.co/bitstreams/7f99ef05-06b6-47ff-b8ce-888cb66e26be/download445e92611024eca6752cbe87ef4819c6MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/90e24c04-7c39-4f77-b9df-89c87931ce84/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/31017oai:repository.eafit.edu.co:10784/310172022-05-16 02:45:34.038open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co