Numerical treatment of cosserat based rate independent strain gradient plasticity theories

The current trend towards miniaturization in the microelectronic industry has promulgated the development of theories aimed at explaining the behavior of materials used on a small scale. In the particular case of metals, a class of non-classical theories of continuous media mechanics has recently be...

Full description

Autores:
Gómez C., Juan David
Tipo de recurso:
Fecha de publicación:
2008
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14522
Acceso en línea:
http://hdl.handle.net/10784/14522
Palabra clave:
Non-Classical Continuum Theories
Cosserat Continuum Theory
Torque Stress Theory
Small-Scale Inelastic Response
Finite Element Analysis
Constitutive Modeling
Integration Algorithm
Teorías No Clásicas Del Continuo
Teoría Del Continuo De Cosserat
Teoría De Tensiones De Par
Respuesta Inelástica A Pequeña Escala
Análisis Por Elementos finitos
Modelación Constitutiva
Algoritmo De Integración
Rights
License
Copyright (c) 2008 Juan David Gómez C.
id REPOEAFIT2_7f2dd2c02b2827cd9474c5abdaf20495
oai_identifier_str oai:repository.eafit.edu.co:10784/14522
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Numerical treatment of cosserat based rate independent strain gradient plasticity theories
dc.title.spa.fl_str_mv Tratamiento numérico de una teoría de plasticidad por gradiente de deformación basada en un modelo de cosserat
title Numerical treatment of cosserat based rate independent strain gradient plasticity theories
spellingShingle Numerical treatment of cosserat based rate independent strain gradient plasticity theories
Non-Classical Continuum Theories
Cosserat Continuum Theory
Torque Stress Theory
Small-Scale Inelastic Response
Finite Element Analysis
Constitutive Modeling
Integration Algorithm
Teorías No Clásicas Del Continuo
Teoría Del Continuo De Cosserat
Teoría De Tensiones De Par
Respuesta Inelástica A Pequeña Escala
Análisis Por Elementos finitos
Modelación Constitutiva
Algoritmo De Integración
title_short Numerical treatment of cosserat based rate independent strain gradient plasticity theories
title_full Numerical treatment of cosserat based rate independent strain gradient plasticity theories
title_fullStr Numerical treatment of cosserat based rate independent strain gradient plasticity theories
title_full_unstemmed Numerical treatment of cosserat based rate independent strain gradient plasticity theories
title_sort Numerical treatment of cosserat based rate independent strain gradient plasticity theories
dc.creator.fl_str_mv Gómez C., Juan David
dc.contributor.author.spa.fl_str_mv Gómez C., Juan David
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT
dc.subject.keyword.eng.fl_str_mv Non-Classical Continuum Theories
Cosserat Continuum Theory
Torque Stress Theory
Small-Scale Inelastic Response
Finite Element Analysis
Constitutive Modeling
Integration Algorithm
topic Non-Classical Continuum Theories
Cosserat Continuum Theory
Torque Stress Theory
Small-Scale Inelastic Response
Finite Element Analysis
Constitutive Modeling
Integration Algorithm
Teorías No Clásicas Del Continuo
Teoría Del Continuo De Cosserat
Teoría De Tensiones De Par
Respuesta Inelástica A Pequeña Escala
Análisis Por Elementos finitos
Modelación Constitutiva
Algoritmo De Integración
dc.subject.keyword.spa.fl_str_mv Teorías No Clásicas Del Continuo
Teoría Del Continuo De Cosserat
Teoría De Tensiones De Par
Respuesta Inelástica A Pequeña Escala
Análisis Por Elementos finitos
Modelación Constitutiva
Algoritmo De Integración
description The current trend towards miniaturization in the microelectronic industry has promulgated the development of theories aimed at explaining the behavior of materials used on a small scale. In the particular case of metals, a class of non-classical theories of continuous media mechanics has recently been used in order to explain a wide range of micrometric scale observations. However, the practical use of the proposed theories remains limited due to difficulties in their numerical implementation. First, when these are to be implemented in formulations by finite elements based on displacements, the need for high orders of continuity in interpolation functions is generated in order to maintain the convergence properties in the algorithm. These limitations generate strong restrictions on the geometries of the available elements. On the other hand, the inelastic models available for small-scale applications have been formulated as deformation theories (total) limiting their applicability to problems under proportional load conditions. In this article two contributions are made in the case of a Cosserat continuum with torque voltages. First, a numerical scheme based on a strategy of penalty functions combined with reduced integration is described to appropriately address the problem of higher order terms present in the Cosserat theory. This scheme results in a new finite element that can be directly coupled to commercial distribution programs that accept user subroutines. Secondly, a theory of fl ow of plasticity is proposed incorporating size effects overcoming some of the obstacles of deformation theories. The resulting constitutive model and its corresponding time integration scheme are coupled to the new element formulated and implemented in ABAQUS user subroutines. The validity of the strategy is demonstrated by simulations of the micro fl exion test on nickel sheets reported in the literature.
publishDate 2008
dc.date.issued.none.fl_str_mv 2008-12-01
dc.date.available.none.fl_str_mv 2019-11-22T19:10:47Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:10:47Z
dc.date.none.fl_str_mv 2008-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14522
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14522
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/218
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/218
dc.rights.eng.fl_str_mv Copyright (c) 2008 Juan David Gómez C.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2008 Juan David Gómez C.
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 4, No 8 (2008)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/844ebc1b-5032-43fe-939e-4fc9451f08fd/download
https://repository.eafit.edu.co/bitstreams/94eaaeaa-fd19-4080-b5bd-2399ee437def/download
https://repository.eafit.edu.co/bitstreams/592c46d8-29ca-47f7-b1bf-09ade2ff7917/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
dfe78d93657f27b8fa7ecd8ad1a84230
0c93cc3399a4434f90800d8d56a869f3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110502536609792
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2008-12-012019-11-22T19:10:47Z2008-12-012019-11-22T19:10:47Z2256-43141794-9165http://hdl.handle.net/10784/14522The current trend towards miniaturization in the microelectronic industry has promulgated the development of theories aimed at explaining the behavior of materials used on a small scale. In the particular case of metals, a class of non-classical theories of continuous media mechanics has recently been used in order to explain a wide range of micrometric scale observations. However, the practical use of the proposed theories remains limited due to difficulties in their numerical implementation. First, when these are to be implemented in formulations by finite elements based on displacements, the need for high orders of continuity in interpolation functions is generated in order to maintain the convergence properties in the algorithm. These limitations generate strong restrictions on the geometries of the available elements. On the other hand, the inelastic models available for small-scale applications have been formulated as deformation theories (total) limiting their applicability to problems under proportional load conditions. In this article two contributions are made in the case of a Cosserat continuum with torque voltages. First, a numerical scheme based on a strategy of penalty functions combined with reduced integration is described to appropriately address the problem of higher order terms present in the Cosserat theory. This scheme results in a new finite element that can be directly coupled to commercial distribution programs that accept user subroutines. Secondly, a theory of fl ow of plasticity is proposed incorporating size effects overcoming some of the obstacles of deformation theories. The resulting constitutive model and its corresponding time integration scheme are coupled to the new element formulated and implemented in ABAQUS user subroutines. The validity of the strategy is demonstrated by simulations of the micro fl exion test on nickel sheets reported in the literature.La tendencia actual hacia la miniaturización en la industria microelectrónica ha promulgado el desarrollo de teorías orientadas a explicar el comportamiento de materiales usados en pequeña escala. En el caso particular de los metales, recientemente se ha usado una clase de teorías no clásicas de la mecánica de los medios continuos con el fin de explicar una amplia gama de observaciones a escala micrométrica. Sin embargo el uso práctico de las teorías propuestas permanece limitado debido a dificultades a la hora de su implementación numérica. En primer lugar, cuando éstas van a ser implementadas en formulaciones por elementos finitos basadas en desplazamientos se genera la necesidad de altos órdenes de continuidad en las funciones de interpolación con el fin de mantener las propiedades de convergencia en el algoritmo. Estas limitaciones generan fuertes restricciones en las geometrías de los elementos disponibles. De otro lado, los modelos inelásticos disponibles para aplicaciones a pequeña escala han sido formulados como teorías de deformación (total) limitando su aplicabilidad a problemas bajo condiciones proporcionales de carga. En el presente artículo se hacen dos contribuciones para el caso de un continuo de Cosserat con tensiones de par. Primero se describe un esquema numérico basado en una estrategia de funciones de penalización combinadas con integración reducida para abordar apropiadamente el problema de los términos de orden superior presentes en la teoría de los Cosserat. Este esquema da como resultado un nuevo elemento finito que puede ser directamente acoplado a programas de distribución comercial que acepten subrutinas de usuario. En segundo lugar se propone una teoría de flujo de plasticidad incorporando efectos de tamaño superando algunos de los obstáculos de las teorías por deformación. El modelo constitutivo resultante y su correspondiente esquema de integración en el tiempo son acoplados al nuevo elemento formulado e implementados en subrutinas de usuario de ABAQUS. La validez de la estrategia es demostrada mediante simulaciones del ensayo de microflexión en láminas de níquel reportados en la literatura.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/218http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/218Copyright (c) 2008 Juan David Gómez C.Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 4, No 8 (2008)Numerical treatment of cosserat based rate independent strain gradient plasticity theoriesTratamiento numérico de una teoría de plasticidad por gradiente de deformación basada en un modelo de cosseratarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Non-Classical Continuum TheoriesCosserat Continuum TheoryTorque Stress TheorySmall-Scale Inelastic ResponseFinite Element AnalysisConstitutive ModelingIntegration AlgorithmTeorías No Clásicas Del ContinuoTeoría Del Continuo De CosseratTeoría De Tensiones De ParRespuesta Inelástica A Pequeña EscalaAnálisis Por Elementos finitosModelación ConstitutivaAlgoritmo De IntegraciónGómez C., Juan DavidUniversidad EAFITIngeniería y Ciencia4899128ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/844ebc1b-5032-43fe-939e-4fc9451f08fd/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL6.pdf6.pdfTexto completo PDFapplication/pdf372992https://repository.eafit.edu.co/bitstreams/94eaaeaa-fd19-4080-b5bd-2399ee437def/downloaddfe78d93657f27b8fa7ecd8ad1a84230MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/592c46d8-29ca-47f7-b1bf-09ade2ff7917/download0c93cc3399a4434f90800d8d56a869f3MD5310784/14522oai:repository.eafit.edu.co:10784/145222020-03-02 23:05:58.992open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co