Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method

The introduction of new loads to the traditional electrical distribution systems can lead to the overloading in the power equipment. This on the sizing makes the useful life of the power equipment decrease considerably, in addition, the reliability and stability of the system begins to be compromise...

Full description

Autores:
Villacres, Fabricio
Inga, Esteban
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/17660
Acceso en línea:
http://hdl.handle.net/10784/17660
Palabra clave:
Optimization
Planning
Distribution networks
Geolocation
Sizing
Metaheuristics
Optimización
Planeación
Redes de distribución
Geolocalización
Dimensionamiento
Metaheurística
Rights
License
Copyright © 2019 Fabricio Villacres, Esteban Inga
id REPOEAFIT2_7d307eec2fd0b42554188c14c5fce399
oai_identifier_str oai:repository.eafit.edu.co:10784/17660
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
dc.title.spa.fl_str_mv Planeación y dimensionamiento de redes eléctricas de distribución soterrada mediante un método metaheurístico
title Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
spellingShingle Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
Optimization
Planning
Distribution networks
Geolocation
Sizing
Metaheuristics
Optimización
Planeación
Redes de distribución
Geolocalización
Dimensionamiento
Metaheurística
title_short Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
title_full Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
title_fullStr Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
title_full_unstemmed Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
title_sort Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic Method
dc.creator.fl_str_mv Villacres, Fabricio
Inga, Esteban
dc.contributor.author.spa.fl_str_mv Villacres, Fabricio
Inga, Esteban
dc.contributor.affiliation.spa.fl_str_mv Universidad Politécnica Salesiana
dc.subject.keyword.eng.fl_str_mv Optimization
Planning
Distribution networks
Geolocation
Sizing
Metaheuristics
topic Optimization
Planning
Distribution networks
Geolocation
Sizing
Metaheuristics
Optimización
Planeación
Redes de distribución
Geolocalización
Dimensionamiento
Metaheurística
dc.subject.keyword.spa.fl_str_mv Optimización
Planeación
Redes de distribución
Geolocalización
Dimensionamiento
Metaheurística
description The introduction of new loads to the traditional electrical distribution systems can lead to the overloading in the power equipment. This on the sizing makes the useful life of the power equipment decrease considerably, in addition, the reliability and stability of the system begins to be compromised. Therefore, through the present investigation it is possible to solve the problem of the planning of electrical distribution networks by integrating the possibility of migrating from the concept of traditional electric networks to smart electric networks, the same ones that only electrical distribution systems of robust networks are achieved heterogeneous bidirectional communication. The present work focused on the development of a model capable of locating the distribution transformers in the best sites to satisfy the majority of users of the electrical network and obtain the best topology by applying the theory of graphs In addition, the presented model contemplates the development of a heuristic capable of executing georeferenced planning processes through the management and use of geolocated information from OpenStreetMap through the .osm file that this free platform offers us. The heuristic proposed in the present document is modeled using the Matlab software and to validate the information, the Cymdist software is required.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-11-29
dc.date.available.none.fl_str_mv 2020-09-04T16:41:30Z
dc.date.accessioned.none.fl_str_mv 2020-09-04T16:41:30Z
dc.date.none.fl_str_mv 2019-11-29
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/17660
identifier_str_mv 1794-9165
url http://hdl.handle.net/10784/17660
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5224
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5224
dc.rights.eng.fl_str_mv Copyright © 2019 Fabricio Villacres, Esteban Inga
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright © 2019 Fabricio Villacres, Esteban Inga
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia, Vol. 15, Núm. 30 (2019)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/f14f6f4c-b3ca-4593-926a-01664aa7b77a/download
https://repository.eafit.edu.co/bitstreams/fe0f03ff-3d60-4d78-b7d8-3bb2ab7bfbad/download
https://repository.eafit.edu.co/bitstreams/248c6903-5e0c-48a9-b016-6a36440ec5d6/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
112b792e831d860b119911b5889c7deb
1823ad7af1d1dd12bfd8aa1b5bd96a98
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102429987635200
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2019-11-292020-09-04T16:41:30Z2019-11-292020-09-04T16:41:30Z1794-9165http://hdl.handle.net/10784/17660The introduction of new loads to the traditional electrical distribution systems can lead to the overloading in the power equipment. This on the sizing makes the useful life of the power equipment decrease considerably, in addition, the reliability and stability of the system begins to be compromised. Therefore, through the present investigation it is possible to solve the problem of the planning of electrical distribution networks by integrating the possibility of migrating from the concept of traditional electric networks to smart electric networks, the same ones that only electrical distribution systems of robust networks are achieved heterogeneous bidirectional communication. The present work focused on the development of a model capable of locating the distribution transformers in the best sites to satisfy the majority of users of the electrical network and obtain the best topology by applying the theory of graphs In addition, the presented model contemplates the development of a heuristic capable of executing georeferenced planning processes through the management and use of geolocated information from OpenStreetMap through the .osm file that this free platform offers us. The heuristic proposed in the present document is modeled using the Matlab software and to validate the information, the Cymdist software is required.La introducción de nuevas cargas a los sistemas eléctricos de distribución tradicionales puede provocar sobrecarga en los equipos de potencia. Esta sobrecarga hace que la vida útil de los equipos de potencia disminuya considerablemente además, la confiabilidad y estabilidad del sistema comienza a verse comprometido. Por lo tanto, mediante la presente investigación se da solución al problema de planeación de redes eléctricas de distribución integrando la posibilidad de migrar del concepto de redes eléctricas tradicionales a redes eléctricas inteligentes, las mismas que, únicamente se consigue dotando a los sistemas eléctricos de distribución de robustas redes heterogéneas de comunicación bidireccional. El presente trabajo se enfoca en el desarrollo de un modelo capaz de ubicar los transformadores de distribución en los mejores sitios para satisfacer de energía a los usuarios de la red eléctrica y de conseguir la mejor topología mediante la aplicación de teoría de grafos. Además, el presente modelo contempla el desarrollo de una heurística capaz de ejecutar procesos de planeación georreferenciada mediante la gestión y utilización de la información geolocalizada desde OpenStreetMap mediante el archivo .osm que, esta plataforma gratuita, nos ofrece.La heurística propuesta en el presente documento se modela utilizando el software Matlab y para validar la información, se requiere el software Cymdist.application/pdfspaUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5224https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5224Copyright © 2019 Fabricio Villacres, Esteban IngaAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 15, Núm. 30 (2019)Planning and Sizing of Electrical Networks of Underground Distribution by Metaheuristic MethodPlaneación y dimensionamiento de redes eléctricas de distribución soterrada mediante un método metaheurísticoarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1OptimizationPlanningDistribution networksGeolocationSizingMetaheuristicsOptimizaciónPlaneaciónRedes de distribuciónGeolocalizaciónDimensionamientoMetaheurísticaVillacres, Fabricio43f16456-7342-4c0d-928c-35d3f9ad9092-1Inga, Estebanfbcb9495-e9ea-48c8-beae-bf892d853160-1Universidad Politécnica SalesianaIngeniería y Ciencia1530141166THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/f14f6f4c-b3ca-4593-926a-01664aa7b77a/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL5224-Article Text-21330-1-10-20191129.pdf5224-Article Text-21330-1-10-20191129.pdfTexto completo PDFapplication/pdf1005261https://repository.eafit.edu.co/bitstreams/fe0f03ff-3d60-4d78-b7d8-3bb2ab7bfbad/download112b792e831d860b119911b5889c7debMD52articulo - copia.htmlarticulo - copia.htmlTexto completo HTMLtext/html375https://repository.eafit.edu.co/bitstreams/248c6903-5e0c-48a9-b016-6a36440ec5d6/download1823ad7af1d1dd12bfd8aa1b5bd96a98MD5310784/17660oai:repository.eafit.edu.co:10784/176602024-12-04 11:49:53.879open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co