Solution of the Rayleigh-Plesset Equation Through the Finite Element Method

In this work we present numerical solutions of the Rayleigh-Plesset equation which describes the evolution of cavitating bubbles. In order to do that, we consider FEMG (Finite Element Method Galerkin); this simulation is performed for an inviscid and incompressible fluid in an uniform temperature fi...

Full description

Autores:
Ramírez R., G.A
Jácome M, C.E
Giraldo A, J.C
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/14414
Acceso en línea:
http://hdl.handle.net/10784/14414
Palabra clave:
Cavitation
Rayleigh-Plesset Equation
Galerkin´S Finite Element Method
Vapor Pressure
Inviscid Fluid
Incompressible Fluid
Cavitación
Ecuación De Rayleigh-Plesset
Método De Elementos Finitos De Galerkin
Presión De Vapor
Fluido Invisible
Fluido Incompresible
Rights
License
Copyright (c) 2013 G.A Ramírez R., C.E Jácome M, J.C Giraldo A
id REPOEAFIT2_76537cc1374203c5c6e5359f3b001638
oai_identifier_str oai:repository.eafit.edu.co:10784/14414
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-03-222019-11-22T17:02:39Z2013-03-222019-11-22T17:02:39Z2256-43141794-9165http://hdl.handle.net/10784/1441410.17230/ingciecia.9.17.7In this work we present numerical solutions of the Rayleigh-Plesset equation which describes the evolution of cavitating bubbles. In order to do that, we consider FEMG (Finite Element Method Galerkin); this simulation is performed for an inviscid and incompressible fluid in an uniform temperature field with constant surface tension, and the cavitation model into the which the pressure inside bubbles is equal to the fluid vapor pressure. Thus, in this problem is considered the Dirichlet boundary problem, and we obtained criteria for the boundary conditions at the cavitation phenomenon through to the which give rise to the bubble growing.En este trabajo presentamos soluciones numéricas de la ecuación de Rayleigh-Plesset que describe la evolución de las burbujas de cavitación. Para hacer eso, consideramos FEMG (Método de elementos finitos Galerkin); Esta simulación se realiza para un fluido invisible e incompresible en un campo de temperatura uniforme con tensión superficial constante, y el modelo de cavitación en el que la presión dentro de las burbujas es igual a la presión de vapor del fluido. Por lo tanto, en este problema se considera el problema de límite de Dirichlet, y obtuvimos criterios para las condiciones de contorno en el fenómeno de cavitación a través del cual dan lugar al crecimiento de la burbuja.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1837http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1837Copyright (c) 2013 G.A Ramírez R., C.E Jácome M, J.C Giraldo AAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 9, No 17 (2013)Solution of the Rayleigh-Plesset Equation Through the Finite Element MethodSolución de la ecuación de Rayleigh-Plesset por medio del método del elemento finitoarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CavitationRayleigh-Plesset EquationGalerkin´S Finite Element MethodVapor PressureInviscid FluidIncompressible FluidCavitaciónEcuación De Rayleigh-PlessetMétodo De Elementos Finitos De GalerkinPresión De VaporFluido InvisibleFluido IncompresibleRamírez R., G.AJácome M, C.EGiraldo A, J.CUniversidad Distrital Francisco José de CaldasIngeniería y Ciencia917147162ing.cienc.ORIGINALdocument (10).pdfdocument (10).pdfTexto completo PDFapplication/pdf553514https://repository.eafit.edu.co/bitstreams/017ccf63-01be-4868-a4fa-e10b2721c0fb/download34c99624cdc8aed892e83501eab4c80aMD51articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/c8522833-afcc-46d7-acd3-99cb1289e558/downloadc7bdfd30ac76b48cf6593af5472b126aMD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/9836335e-4019-41a8-8fc1-2529dcdf0560/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/14414oai:repository.eafit.edu.co:10784/144142020-03-02 21:10:08.903open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
dc.title.spa.fl_str_mv Solución de la ecuación de Rayleigh-Plesset por medio del método del elemento finito
title Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
spellingShingle Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
Cavitation
Rayleigh-Plesset Equation
Galerkin´S Finite Element Method
Vapor Pressure
Inviscid Fluid
Incompressible Fluid
Cavitación
Ecuación De Rayleigh-Plesset
Método De Elementos Finitos De Galerkin
Presión De Vapor
Fluido Invisible
Fluido Incompresible
title_short Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
title_full Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
title_fullStr Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
title_full_unstemmed Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
title_sort Solution of the Rayleigh-Plesset Equation Through the Finite Element Method
dc.creator.fl_str_mv Ramírez R., G.A
Jácome M, C.E
Giraldo A, J.C
dc.contributor.author.spa.fl_str_mv Ramírez R., G.A
Jácome M, C.E
Giraldo A, J.C
dc.contributor.affiliation.spa.fl_str_mv Universidad Distrital Francisco José de Caldas
dc.subject.keyword.eng.fl_str_mv Cavitation
Rayleigh-Plesset Equation
Galerkin´S Finite Element Method
Vapor Pressure
Inviscid Fluid
Incompressible Fluid
topic Cavitation
Rayleigh-Plesset Equation
Galerkin´S Finite Element Method
Vapor Pressure
Inviscid Fluid
Incompressible Fluid
Cavitación
Ecuación De Rayleigh-Plesset
Método De Elementos Finitos De Galerkin
Presión De Vapor
Fluido Invisible
Fluido Incompresible
dc.subject.keyword.spa.fl_str_mv Cavitación
Ecuación De Rayleigh-Plesset
Método De Elementos Finitos De Galerkin
Presión De Vapor
Fluido Invisible
Fluido Incompresible
description In this work we present numerical solutions of the Rayleigh-Plesset equation which describes the evolution of cavitating bubbles. In order to do that, we consider FEMG (Finite Element Method Galerkin); this simulation is performed for an inviscid and incompressible fluid in an uniform temperature field with constant surface tension, and the cavitation model into the which the pressure inside bubbles is equal to the fluid vapor pressure. Thus, in this problem is considered the Dirichlet boundary problem, and we obtained criteria for the boundary conditions at the cavitation phenomenon through to the which give rise to the bubble growing.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-03-22
dc.date.available.none.fl_str_mv 2019-11-22T17:02:39Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T17:02:39Z
dc.date.none.fl_str_mv 2013-03-22
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14414
dc.identifier.doi.none.fl_str_mv 10.17230/ingciecia.9.17.7
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciecia.9.17.7
url http://hdl.handle.net/10784/14414
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1837
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1837
dc.rights.eng.fl_str_mv Copyright (c) 2013 G.A Ramírez R., C.E Jácome M, J.C Giraldo A
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2013 G.A Ramírez R., C.E Jácome M, J.C Giraldo A
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 9, No 17 (2013)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/017ccf63-01be-4868-a4fa-e10b2721c0fb/download
https://repository.eafit.edu.co/bitstreams/c8522833-afcc-46d7-acd3-99cb1289e558/download
https://repository.eafit.edu.co/bitstreams/9836335e-4019-41a8-8fc1-2529dcdf0560/download
bitstream.checksum.fl_str_mv 34c99624cdc8aed892e83501eab4c80a
c7bdfd30ac76b48cf6593af5472b126a
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110292023443456