Measuring firm size distribution with semi-nonparametric densities

In this article, we propose a new methodology based on a (log) semi-nonparametric (log- SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributi...

Full description

Autores:
Cortés, Lina
Mora-Valencia, Andrés
Perote, Javier
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/11181
Acceso en línea:
http://hdl.handle.net/10784/11181
Palabra clave:
Firms size distribution
Heavy tail distributions
Semi-nonparametric modeling
Bivariate distributions.
Rights
License
Acceso abierto
id REPOEAFIT2_69319eb43817ae2950597eff81dc7910
oai_identifier_str oai:repository.eafit.edu.co:10784/11181
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2017-01-31T15:55:01Z2017-01-162017-01-31T15:55:01Zhttp://hdl.handle.net/10784/11181C14C53L11In this article, we propose a new methodology based on a (log) semi-nonparametric (log- SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm’s assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature.engUniversidad EAFITEscuela de Economía y FinanzasMeasuring firm size distribution with semi-nonparametric densitiesworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Firms size distributionHeavy tail distributionsSemi-nonparametric modelingBivariate distributions.lcortesd@eafit.edu.coCortés, LinaMora-Valencia, AndrésPerote, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/1a898f7f-2dfd-4773-90a2-0137f7576c53/download76025f86b095439b7ac65b367055d40cMD51ORIGINALWP-2017-01 Lina Cortés.pdfWP-2017-01 Lina Cortés.pdfapplication/pdf1253685https://repository.eafit.edu.co/bitstreams/f2ab2171-0577-477d-ae9e-44e2318c8065/download177d40f4303bdcd429fa4603aa28835eMD5210784/11181oai:repository.eafit.edu.co:10784/111812024-03-05 14:06:04.996open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Measuring firm size distribution with semi-nonparametric densities
title Measuring firm size distribution with semi-nonparametric densities
spellingShingle Measuring firm size distribution with semi-nonparametric densities
Firms size distribution
Heavy tail distributions
Semi-nonparametric modeling
Bivariate distributions.
title_short Measuring firm size distribution with semi-nonparametric densities
title_full Measuring firm size distribution with semi-nonparametric densities
title_fullStr Measuring firm size distribution with semi-nonparametric densities
title_full_unstemmed Measuring firm size distribution with semi-nonparametric densities
title_sort Measuring firm size distribution with semi-nonparametric densities
dc.creator.fl_str_mv Cortés, Lina
Mora-Valencia, Andrés
Perote, Javier
dc.contributor.eafitauthor.none.fl_str_mv lcortesd@eafit.edu.co
dc.contributor.author.none.fl_str_mv Cortés, Lina
Mora-Valencia, Andrés
Perote, Javier
dc.subject.keyword.spa.fl_str_mv Firms size distribution
Heavy tail distributions
Semi-nonparametric modeling
Bivariate distributions.
topic Firms size distribution
Heavy tail distributions
Semi-nonparametric modeling
Bivariate distributions.
description In this article, we propose a new methodology based on a (log) semi-nonparametric (log- SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm’s assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature.
publishDate 2017
dc.date.available.none.fl_str_mv 2017-01-31T15:55:01Z
dc.date.issued.none.fl_str_mv 2017-01-16
dc.date.accessioned.none.fl_str_mv 2017-01-31T15:55:01Z
dc.type.eng.fl_str_mv workingPaper
info:eu-repo/semantics/workingPaper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.local.spa.fl_str_mv Documento de trabajo de investigación
dc.type.hasVersion.eng.fl_str_mv draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/11181
dc.identifier.jel.none.fl_str_mv C14
C53
L11
url http://hdl.handle.net/10784/11181
identifier_str_mv C14
C53
L11
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.department.spa.fl_str_mv Escuela de Economía y Finanzas
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/1a898f7f-2dfd-4773-90a2-0137f7576c53/download
https://repository.eafit.edu.co/bitstreams/f2ab2171-0577-477d-ae9e-44e2318c8065/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
177d40f4303bdcd429fa4603aa28835e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110191897018368