Measuring firm size distribution with semi-nonparametric densities
In this article, we propose a new methodology based on a (log) semi-nonparametric (log- SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributi...
- Autores:
-
Cortés, Lina
Mora-Valencia, Andrés
Perote, Javier
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/11181
- Acceso en línea:
- http://hdl.handle.net/10784/11181
- Palabra clave:
- Firms size distribution
Heavy tail distributions
Semi-nonparametric modeling
Bivariate distributions.
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_69319eb43817ae2950597eff81dc7910 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/11181 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2017-01-31T15:55:01Z2017-01-162017-01-31T15:55:01Zhttp://hdl.handle.net/10784/11181C14C53L11In this article, we propose a new methodology based on a (log) semi-nonparametric (log- SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm’s assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature.engUniversidad EAFITEscuela de Economía y FinanzasMeasuring firm size distribution with semi-nonparametric densitiesworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Firms size distributionHeavy tail distributionsSemi-nonparametric modelingBivariate distributions.lcortesd@eafit.edu.coCortés, LinaMora-Valencia, AndrésPerote, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/1a898f7f-2dfd-4773-90a2-0137f7576c53/download76025f86b095439b7ac65b367055d40cMD51ORIGINALWP-2017-01 Lina Cortés.pdfWP-2017-01 Lina Cortés.pdfapplication/pdf1253685https://repository.eafit.edu.co/bitstreams/f2ab2171-0577-477d-ae9e-44e2318c8065/download177d40f4303bdcd429fa4603aa28835eMD5210784/11181oai:repository.eafit.edu.co:10784/111812024-03-05 14:06:04.996open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Measuring firm size distribution with semi-nonparametric densities |
title |
Measuring firm size distribution with semi-nonparametric densities |
spellingShingle |
Measuring firm size distribution with semi-nonparametric densities Firms size distribution Heavy tail distributions Semi-nonparametric modeling Bivariate distributions. |
title_short |
Measuring firm size distribution with semi-nonparametric densities |
title_full |
Measuring firm size distribution with semi-nonparametric densities |
title_fullStr |
Measuring firm size distribution with semi-nonparametric densities |
title_full_unstemmed |
Measuring firm size distribution with semi-nonparametric densities |
title_sort |
Measuring firm size distribution with semi-nonparametric densities |
dc.creator.fl_str_mv |
Cortés, Lina Mora-Valencia, Andrés Perote, Javier |
dc.contributor.eafitauthor.none.fl_str_mv |
lcortesd@eafit.edu.co |
dc.contributor.author.none.fl_str_mv |
Cortés, Lina Mora-Valencia, Andrés Perote, Javier |
dc.subject.keyword.spa.fl_str_mv |
Firms size distribution Heavy tail distributions Semi-nonparametric modeling Bivariate distributions. |
topic |
Firms size distribution Heavy tail distributions Semi-nonparametric modeling Bivariate distributions. |
description |
In this article, we propose a new methodology based on a (log) semi-nonparametric (log- SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm’s assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature. |
publishDate |
2017 |
dc.date.available.none.fl_str_mv |
2017-01-31T15:55:01Z |
dc.date.issued.none.fl_str_mv |
2017-01-16 |
dc.date.accessioned.none.fl_str_mv |
2017-01-31T15:55:01Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/11181 |
dc.identifier.jel.none.fl_str_mv |
C14 C53 L11 |
url |
http://hdl.handle.net/10784/11181 |
identifier_str_mv |
C14 C53 L11 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/1a898f7f-2dfd-4773-90a2-0137f7576c53/download https://repository.eafit.edu.co/bitstreams/f2ab2171-0577-477d-ae9e-44e2318c8065/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 177d40f4303bdcd429fa4603aa28835e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110191897018368 |